Search


Show only items where

Iterative Learning in Functional Space for Non-Square Linear Systems

TitleIterative Learning in Functional Space for Non-Square Linear Systems
Publication TypeConference Paper
Year of Publication2021
Conference Name2021 60th IEEE Conference on Decision and Control (CDC)
Pagination5858–5863
AuthorsSantina, CDella, Angelini, F
PublisherIEEE
KeywordsAerospace electronics, Conferences, Discrete-time systems, Linear systems, Process control, Standards, Time-varying systems
Abstract

Many control problems are naturally expressed in continuous time. Yet, in Iterative Learning Control of linear systems, sampling the output signal has proven to be a convenient strategy to simplify the learning process while sacrificing only marginally the overall performance. In this context, the control action is similarly discretized through zero-order hold - thus leading to a discrete-time system. With this paper, we want to investigate an alternative strategy, which is to track sampled outputs without masking the continuous nature of the input. Instead, we look at the whole input evolution as an element of a functional subspace. We show how standard results in linear Iterative Learning Control naturally extend to this context. As a result, we can leverage the infinite-dimensional nature of functional spaces to achieve exact tracking of strongly non-square systems (number of inputs less than outputs). We also show that constraints - like those imposed by intermittent control - can be naturally integrated within this framework.

URLhttps://ieeexplore.ieee.org/document/9683673
DOI10.1109/CDC45484.2021.9683673

Comparison between rigid and soft poly-articulated prosthetic hands in non-expert myo-electric users shows advantages of soft robotics.

TitleComparison between rigid and soft poly-articulated prosthetic hands in non-expert myo-electric users shows advantages of soft robotics.
Publication TypeJournal Article
Year of Publication2021
AuthorsCapsi-Morales, P, Piazza, C, Catalano, MG, Grioli, G, Schiavon, L, Fiaschi, E, Bicchi, A
JournalScientific Reports
Volume11
Start Page1
Issue1
Date Published12/2021
ISBN NumberISSN 2045-2322
Abstract

Notwithstanding the advancement of modern bionic hands and the large variety of prosthetic hands in the market, commercial devices still present limited acceptance and percentage of daily use. While commercial prostheses present rigid mechanical structures, emerging trends in the design of robotic hands are moving towards soft technologies. Although this approach is inspired by nature and could be promising for prosthetic applications, there is scant literature concerning its benefits for end-users and in real-life scenarios. In this work, we evaluate and assess the role and the benefits of soft robotic technologies in the field of prosthetics. We propose a thorough comparison between rigid and soft characteristics of two poly-articulated hands in 5 non-expert myo-electric prosthesis users in pre- and post-therapeutic training conditions. The protocol includes two standard functional assessments, three surveys for user-perception, and three customized tests to evaluate the sense of embodiment. Results highlight that rigid hands provide a more precise grasp, while soft properties show higher functionalities thanks to their adaptability to different requirements, intuitive use and more natural execution of activities of daily living. This comprehensive evaluation suggests that softness could also promote a quick integration of the system in non-expert users.

URLhttps://www.nature.com/articles/s41598-021-02562-y
DOI10.1038/s41598-021-02562-y

WRAPP-up: A Dual-Arm Robot for Intralogistics

TitleWRAPP-up: A Dual-Arm Robot for Intralogistics
Publication TypeJournal Article
Year of Publication2021
AuthorsGarabini, M, Caporale, D, Tincani, V, Palleschi, A, Gabellieri, C, Gugliotta, M, Settimi, A, Catalano, MGiuseppe, Grioli, G, Pallottino, L
JournalIEEE Robotics Automation Magazine
Volume28
Pagination50-66
Abstract

The diffusion of e-commerce has produced larger and larger volumes of varying items to be handled in warehouses, with the effect that the need for picking automation is increasing. Conventionally, automation has been achieved through a custom plant designed for large-scale production of items having well-established characteristics that are expected to change slowly and to only a small degree over time. However, today the challenge is to realize a solution that is flexible enough to handle goods with different shapes, sizes, and physical properties and that require different grasping modes. To solve this problem, we first analyzed how humans perform picking and then synthesized their behavior according to four main tactics. These were then used as guidelines for the design, planning, and control of WRAPP-up, a dual-arm robot composed of two anthropomorphic manipulators: a Pisa/IIT SoftHand and a velvet tray (Figure 1). The system has been validated and evaluated through extensive experimental tests.

URLhttps://ieeexplore.ieee.org/document/9212558?fbclid=IwAR05rgEATvdOFrtQWMrNKMrGHGfvtKE4MEKcj3i9pb6KAI4XTdhMqaq7MNc
DOI10.1109/MRA.2020.3015899

Scaling of joint mass and metabolism fluctuations in in silico cell-laden spheroids

TitleScaling of joint mass and metabolism fluctuations in in silico cell-laden spheroids
Publication TypeJournal Article
Year of Publication2021
AuthorsBotte, E, Biagini, F, Magliaro, C, Rinaldo, A, Maritan, A, Ahluwalia, A
JournalProceedings of the National Academy of Sciences
Volume118
Abstract

Variations and fluctuations are characteristic features of biological systems and are also manifested in cell cultures. Here, we describe a computational pipeline for identifying the range of three-dimensional (3D) cell-aggregate sizes in which nonisometric scaling emerges in the presence of joint mass and metabolic rate fluctuations. The 3D cell-laden spheroids with size and single-cell metabolic rates described by probability density functions were randomly generated in silico. The distributions of the resulting metabolic rates of the spheroids were computed by modeling oxygen diffusion and reaction. Then, a method for estimating scaling exponents of correlated variables through statistically significant data collapse of joint probability distributions was developed. The method was used to identify a physiologically relevant range of spheroid sizes, where both nonisometric scaling and a minimum oxygen concentration (0.04 mol⋅m−3) is maintained. The in silico pipeline described enables the prediction of the number of experiments needed for an acceptable collapse and, thus, a consistent estimate of scaling parameters. Using the pipeline, we also show that scaling exponents may be significantly different in the presence of joint mass and metabolic-rate variations typically found in cells. Our study highlights the importance of incorporating fluctuations and variability in size and metabolic rates when estimating scaling exponents. It also suggests the need for taking into account their covariations for better understanding and interpreting experimental observations both in vitro and in vivo and brings insights for the design of more predictive and physiologically relevant in vitro models.

URLhttps://www.pnas.org/content/118/38/e2025211118
DOI10.1073/pnas.2025211118

Breathing in vitro: Designs and applications of engineered lung models

TitleBreathing in vitro: Designs and applications of engineered lung models
Publication TypeJournal Article
Year of Publication2021
AuthorsNossa, R, Costa, J, Cacopardo, L, Ahluwalia, A
JournalJournal of Tissue Engineering
Volume12
Pagination20417314211008696
Keywordsaerosol exposure, fluidic systems, in vitro models, Lung models, stretching systems
Abstract

The aim of this review is to provide a systematic design guideline to users, particularly engineers interested in developing and deploying lung models, and biologists seeking to identify a suitable platform for conducting in vitro experiments involving pulmonary cells or tissues. We first discuss the state of the art on lung in vitro models, describing the most simplistic and traditional ones. Then, we analyze in further detail the more complex dynamic engineered systems that either provide mechanical cues, or allow for more predictive exposure studies, or in some cases even both. This is followed by a dedicated section on microchips of the lung. Lastly, we present a critical discussion of the different characteristics of each type of system and the criteria which may help researchers select the most appropriate technology according to their specific requirements. Readers are encouraged to refer to the tables accompanying the different sections where comprehensive and quantitative information on the operating parameters and performance of the different systems reported in the literature is provided.

Tools and approaches for analysing the role of mitochondria in health, development and disease using human cerebral organoids

TitleTools and approaches for analysing the role of mitochondria in health, development and disease using human cerebral organoids
Publication TypeJournal Article
Year of Publication2021
AuthorsLiput, M, Magliaro, C, Kuczyńska, Z, Zayat, V, Ahluwalia, A, Buzanska, L
JournalDevelopmental Neurobiology
Keywordscerebral organoids; computational models; mitochondria imaging; mitochondrial dyes; reporter fluorescent proteins.
Abstract

Mitochondria are cellular organelles involved in generating energy to power various processes in the cell. Although the pivotal role of mitochondria in neurogenesis was demonstrated (first in animal models), very little is known about their role in human embryonic neurodevelopment and its pathology. In this respect human-induced pluripotent stem cells (hiPSC)-derived cerebral organoids provide a tractable, alternative model system of the early neural development and disease that is responsive to pharmacological and genetic manipulations, not possible to apply in humans. Although the involvement of mitochondria in the pathogenesis and progression of neurodegenerative diseases and brain dysfunction has been demonstrated, the precise role they play in cell life and death remains unknown, compromising the development of new mitochondria-targeted approaches to treat human diseases. The cerebral organoid model of neurogenesis and disease in vitro provides an unprecedented opportunity to answer some of the most fundamental questions about mitochondrial function in early human neurodevelopment and neural pathology. Largely an unexplored territory due to the lack of tools and approaches, this review focuses on recent technological advancements in fluorescent and molecular tools, imaging systems, and computational approaches for quantitative and qualitative analyses of mitochondrial structure and function in three-dimensional cellular assemblies-cerebral organoids. Future developments in this direction will further facilitate our understanding of the important role or mitochondrial dynamics and energy requirements during early embryonic development. This in turn will provide a further understanding of how dysfunctional mitochondria contribute to disease processes.

URLhttps://pubmed.ncbi.nlm.nih.gov/33725382/
DOI10.1002/dneu.22818. Online ahead of print.

A Configurable Architecture for Two Degree-of-Freedom Variable Stiffness Actuators to Match the Compliant Behavior of Human Joints

TitleA Configurable Architecture for Two Degree-of-Freedom Variable Stiffness Actuators to Match the Compliant Behavior of Human Joints
Publication TypeJournal Article
Year of Publication2021
AuthorsLemerle, S, Catalano, MG, Bicchi, A, Grioli, G
JournalFrontiers in Robotics and AI
Volume8
Date Published03/2021
ISSN2296-9144
Keywordsarticulated soft robotics, artificial joints, humanoids, prostheses, variable stiffness
Abstract

Living beings modulate the impedance of their joints to interact proficiently, robustly, and safely with the environment. These observations inspired the design of soft articulated robots with the development of Variable Impedance and Variable Stiffness Actuators. However, designing them remains a challenging task due to their mechanical complexity, encumbrance, and weight, but also due to the different specifications that the wide range of applications requires. For instance, as prostheses or parts of humanoid systems, there is currently a need for multi-degree-of-freedom joints that have abilities similar to those of human articulations. Toward this goal, we propose a new compact and configurable design for a two-degree-of-freedom variable stiffness joint that can match the passive behavior of a human wrist and ankle. Using only three motors, this joint can control its equilibrium orientation around two perpendicular axes and its overall stiffness as a one-dimensional parameter, like the co-contraction of human muscles. The kinematic architecture builds upon a state-of-the-art rigid parallel mechanism with the addition of nonlinear elastic elements to allow the control of the stiffness. The mechanical parameters of the proposed system can be optimized to match desired passive compliant behaviors and to fit various applications (e.g., prosthetic wrists or ankles, artificial wrists, etc.). After describing the joint structure, we detail the kinetostatic analysis to derive the compliant behavior as a function of the design parameters and to prove the variable stiffness ability of the system. Besides, we provide sets of design parameters to match the passive compliance of either a human wrist or ankle. Moreover, to show the versatility of the proposed joint architecture and as guidelines for the future designer, we describe the influence of the main design parameters on the system stiffness characteristic and show the potential of the design for more complex applications

URLhttps://www.frontiersin.org/article/10.3389/frobt.2021.614145
DOI10.3389/frobt.2021.614145

Integrating Wearable Haptics and Obstacle Avoidance for the Visually Impaired in Indoor Navigation: A User-Centered Approach

TitleIntegrating Wearable Haptics and Obstacle Avoidance for the Visually Impaired in Indoor Navigation: A User-Centered Approach
Publication TypeJournal Article
Year of Publication2021
AuthorsBarontini, F, Catalano, MG, Pallottino, L, Leporini, B, Bianchi, M
JournalIEEE Transactions on Haptics
Volume14
Start Page109
Issue1
Pagination1-1
URLhttps://ieeexplore.ieee.org/document/9099604
DOI10.1109/TOH.2020.2996748