TitleIterative Learning in Functional Space for Non-Square Linear Systems
Publication TypeConference Paper
Year of Publication2021
Conference Name2021 60th IEEE Conference on Decision and Control (CDC)
Pagination5858–5863
AuthorsSantina, CDella, Angelini, F
PublisherIEEE
KeywordsAerospace electronics, Conferences, Discrete-time systems, Linear systems, Process control, Standards, Time-varying systems
Abstract

Many control problems are naturally expressed in continuous time. Yet, in Iterative Learning Control of linear systems, sampling the output signal has proven to be a convenient strategy to simplify the learning process while sacrificing only marginally the overall performance. In this context, the control action is similarly discretized through zero-order hold - thus leading to a discrete-time system. With this paper, we want to investigate an alternative strategy, which is to track sampled outputs without masking the continuous nature of the input. Instead, we look at the whole input evolution as an element of a functional subspace. We show how standard results in linear Iterative Learning Control naturally extend to this context. As a result, we can leverage the infinite-dimensional nature of functional spaces to achieve exact tracking of strongly non-square systems (number of inputs less than outputs). We also show that constraints - like those imposed by intermittent control - can be naturally integrated within this framework.

URLhttps://ieeexplore.ieee.org/document/9683673
DOI10.1109/CDC45484.2021.9683673
AttachmentSize
PDF icon ilc_endpoint_cdc21.pdf1.64 MB