Abstract | Dynamic stimuli in visual and tactile sensory modalities share fundamental psychophysical features that can be explained by similar computational models. In vision, information about relative motion between objects and the observer are mainly processed by optic flow, which is a 2D field of velocities associated with variation of brightness patterns in the image plane. It provides important information about cues for region and boundary segmentation, shape recovery, and so on. For instance, radial patterns of optic flow are often used to estimate time before contact with an approaching object. We put forward the hypothesis that a similar behavior can be present in the tactile domain, in which an analogous paradigm to optic flow might exist. Moreover, as optic flow is also invoked to explain several visual illusions, including the well-known "barber-pole" effect and Ouchi
|