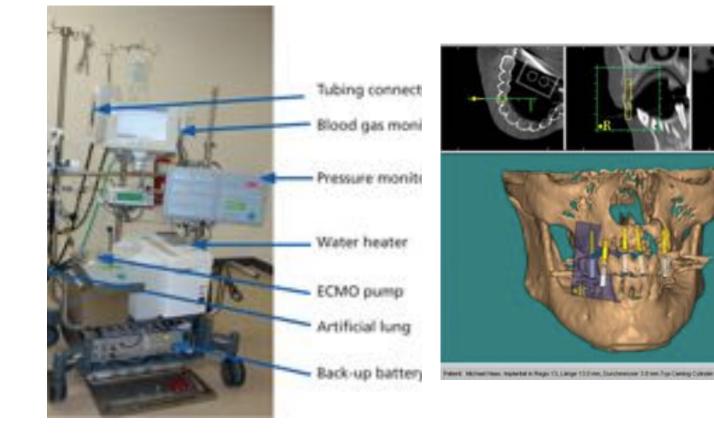
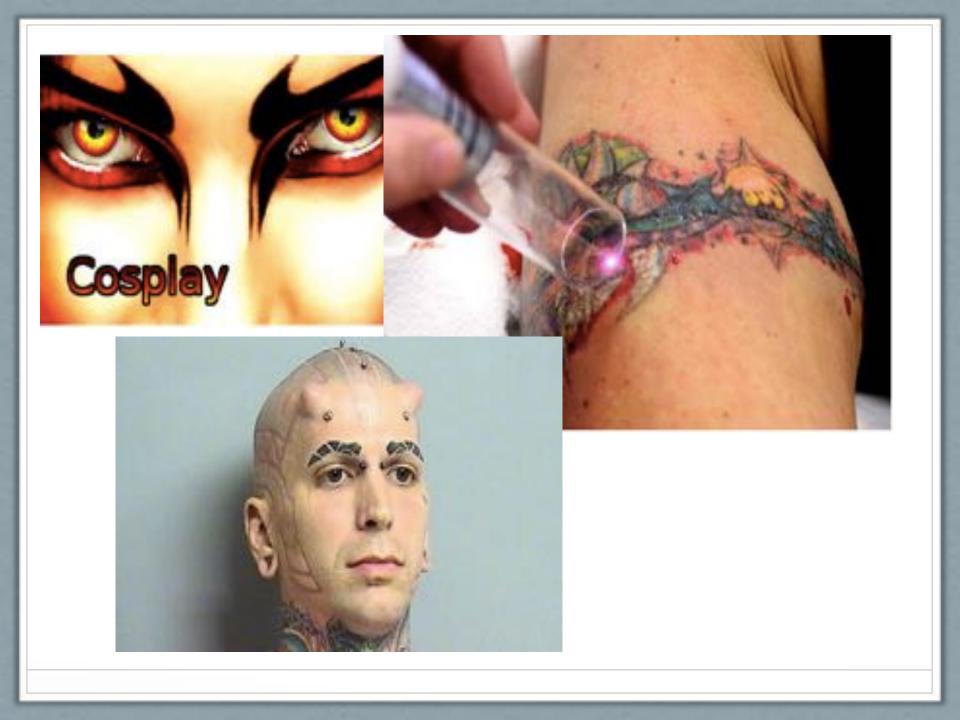

Medical Devices An Introduction

Università di Pisa May 2, 2017 Alice Ravizza www.PGGScientific.com


What do they have in common?



And now?

Some more examples of Medical Devices

- Band aids
- Incontinence pads
- ECG
- RMI
- Heart valves from bovine or porcine tissue
- Knee joints
- Hearing aids
- Vessel mesh

- Bone fillers
- Dental implants
- Bone screws both removable or permanent
- Defibrillators
- IV sets
- Syringes
- Eye drops (artificial tears)
-and on

Where Medicine and Engineering meet

- A Medical Device is an object destined to medical purposes on human patients
- It is designed and manufactured by the industry
- It is marketed to the general public or to health organizations according to (modified) market rules
- The medical devices industry is one of the leading innovation industries

Multiple sides of the same object

- Any given medical device must comply to multiple rules:
 - engineering of design
 - efficiency of industrialization
 - cost-profit on the market
 - multiple regulations aiming to ensure safety
 - clinical efficacy
- It is a challenge to designers
 - Medical state of the art
 - Industry standards
 - Innovation

The first step: a shared definition

- A Medical Device is identified by means of its INTENDED PURPOSE
- Intended to treat, prevent or control physiological characteristics of a living being
 - Disease
 - Handicap
 - Conception
 - Anatomy

.

Comments

- Use on **humans** (or animals on a lower grade of regulation)
- Intended to have a MEDICAL purpose, excluding devices intended for
 - Esthetical purposes
 - Research not aimed to marketing of the device
- Multiple ways of **interacting with the human body**
 - Implant to NO corporeal interaction (medical SW)
 - Temporary or permanent
 - Acute or chronic
 - Energy or substance exchange

EC: Medical Device Directive

- The Medical Device Directive is a <u>law</u> that regulates the marketing of Medical Devices in the EC
- Soon to be substituted by an even stricter Regulation
- Details the device identification
 - Classification
 - Application (custom made, research, marketing...)
- Defines manufacturers responsibilities and duties
 - Essential Requirements for safety and performance
 - Surveillance
- Gives powers to the Local Authorities to control the placing on the market of the devices

Basic requirements in the MDD

- Give proof that the device is safe and effective for the intended use: **Technical File**
 - SAFE: testing as per standards
 - EFFECTIVE: non inferior to clinical state of the art (clinical trials)
- Give proof that the manufacturer can manufacture device **consistently**: Quality Management System
 - Controlled manufacturing
 - Lot/ serial number control
 - General management procedures for suppliers, maintenance, calibration
- **Continuous control**: vigilance and surveillance
 - Post market clinical trials

Risk based approach

Vulnerability of the human body

Potential risks associated with the devices

- Criteria
 - applied to a vast range of different medical devices and technologies
 - combined in various ways in order to determine classification
- Control
 - Higher for higher risk classes
 - From self- declaration to comprehensive device and company audit by Notified Body

Risk classes: criteria

- Intended use (central circulatory or nervous systems increase class)
- Duration of use (duration increases class)
- Kind of contact with the body (not invasive, invasive, implantable)
- Active or not active

Risk classes in EU

- Mass production
 - Class III
 - Class IIb
 - Class IIa
 - Class I
- Custom made
- Clinical trials/ experimental use

Classification and control

- Class I: self declaration of compliance by manufacturer
 band aids, ready made reading glasses, surgical masks and
 - band aids, ready-made reading glasses, surgical masks and gloves
- Class IIa and IIb: preliminary and annual audit by Notified Body on Technical File and on Manufacturing
 - Haemodialysis lines and machines; ECG; ventilators; needles of syringes; scalpels; tracheal tubes; ultrasound fetal heart detectors
- Class III: preliminary and annual audit by Notified Body on Design file, Technical File and on Manufacturing
 - Bovine heart valves; deep brain stimulators for Parkinson; bone implants with antibiotic; Coronary drug eluting stent; cerebrospinal drains

Special classes

- Custom made: self declaration+ clinician prescription
 - Glasses; dentures; most orthoses
- Clinical investigation: special authorization by CA and EC
 Devices not yet legally approved, innovative
- Compassionate use: special authorization by CA and EC

A common trend: risk control

- Devices can be marketed only after **extensive testing**
 - Bench testing
 - In vitro- in vivo testing
 - Clinical trials
- Medical devices companies shall maintain a Quality
 Management System
 - GMP
 - ISO 13485
- Devices must be evaluated over time (follow up)
 - by the manufacturers
 - by the competent authorities

Risk subjects

- Manufacturer shall evaluate impact of use of the device:
 - On patient
 - On intended user
 - On bystanders
 - On general environment
- Manufacturer shall evaluate effect of product impact in all life cycle, from manufacturing to disposal

Scope of the MDD: Device

- Devices on the market must be SAFE and EFFECTIVE
- SAFE: The risk-benefit ratio must be favorable for the patient (or end user)
 - Expected clinical benefit
 - Side effects
 - Residual risk
- EFFECTIVE: The device must effectively perform clinical actions
 - Intended use defines the expected clinical benefit
 - Clinical benefit must be proven by clinical data
- The patient and end user are always protected, even against continuous research

Scope of the MDD: QMS

- Quality of products must be consistent over time
 - Manufacturer responsibility
 - Control by Notified Body for higher classes
- Quality is the output of a complete management system
 - Design
 - Manufacturing
 - Control and product release
 - Connected activities: maintenance, training, environmental control and cleanliness, sterility

Medical Devices Technical File

Università di Pisa May 2, 2017 Alice Ravizza www.PGGScientific.com

Technical documentation Annex II of new Regulation

- Technical documentation
 - clear, organized, readily searchable and unequivocal way
- Prepared by the manufacturer
- Verified by the NB in case of high classes

1. DEVICE DESCRIPTION AND SPECIFICATION, INCLUDING VARIANTS AND ACCESSORIES

- Product name, code, unique identification number
- Intended use, population, principles of operation
- Risk class
- Explanation of novel features/ comparison to previous devices
- Accessories and parts
- Variants
- Device specs (see next slide)
- Similar devices

Device specifications

- key functional elements:
 - parts/components (including software if appropriate),
 - formulation or composition,
 - functionality
- raw materials
 - incorporated into key functional elements
 - contact with the human body (direct or indirect)
- technical specifications (features, dimensions and performance

2. INFORMATION SUPPLIED BY THE MANUFACTURER

- Complete set of labels and IFU
 - All packaging
 - including logistic containers in case of special transport conditions
- All translations

3. DESIGN AND MANUFACTURING INFORMATION

- Understanding the design stages
 - Input (product requirements) & output (product specifications)
 - Review
 - Verification and validation
 - Design change control
- Design and manufacturing location
 - At manufacturer
 - Subcontractors
 - Suppliers

4. RES for DESIGN AND MANUFACTURING INFORMATION

- List of essential requirements and applicable standards
- Complete information and specifications,
 - Product specs (drawings, composition, SW modules)
 - Raw material specs
 - Manufacturing processes and their validation,
 - adjuvants & residuals
 - Quality control
 - continuous monitoring
 - final product testing

5. RISK/BENEFIT ANALYSIS AND RISK MANAGEMENT

- Risk benefit analysis
- Risk control measures
- Results of risk control
 - Clinical evidence
- NOTE: EN ISO 14971:2012

6. PRODUCT VERIFICATION AND VALIDATION

- All the verification and validation testing
 - Rationale for no new testing (example: for biocompatibility)
- Their critical analysis
 - Statistical relevance
 - Applicable standards

6.1.a Pre-clinical data

- Engineering, laboratory, simulated use, animal tests
- Published literature applicable
 - Substantially equivalent device
- Manufacturer's testing
 - test design, complete test or study protocols,
 - methods of data analysis,
 - data summaries and test conclusions

6.1b Required preclinical data

- Biocompatibility ISO 10993
 - all materials in direct or indirect contact
- Physical, chemical profile ISO 10993
- Microbiological characterisation;
- Electrical safety and electromagnetic compatibility; IEC 60601
- Software verification and validation IEC 62304
- Stability/shelf life
- Performance and safety

6.1.c/d Clinical data

- Data regarding clinical performance and clinical benefit on human beings
 - From literature
 - From past data
 - From clinical trials
- Clinical trials are regulated to ensure maximum protection to the human beings

6.2. Additional information in specific cases

- Drug: file for safety, quality and usefulness
- Human and Animal origin: identification and risk profile (see RES 10)
- Absorbables: absorption studies, local tolerance, interaction with drugs, ISO 10993 toxicity
- Sterile: stetilization validation and cleanroom specs
- Measuring: accuracy proof
- Accessories/ combination: validation of combined use

Annex I: how it's made

- I General Requirements
- II REQUIREMENTS REGARDING DESIGN AND CONSTRUCTION
 - Chemical, physical and biological properties
 - Infection and microbial contamination
 - Construction and environmental properties
 - Devices with a measuring function
 - Protection against radiation
 - Requirements for medical devices connected to or equipped with an energy source
 - Information supplied by the manufacturer

General comments

• "Designed and manufactured"

- Design criteria
- Product specifications
- Production control activities
- "Minimize the risk"
 - Evaluation of causes and of probability of risk
 - Control methods
 - Perfection is "impossible" but it is required to implement all possible solutions

RES 2 on risk

- Preferred order of RES:
 - Safe design and construction
 - Protection from uneliminable risk,
 - Information for safety (safe use description) and training
- Information on residual risk SHALL be provided

RES 7 on design

- Impact of processes on material properties
- Mechanical, surface, chemical properties and specs
 - Including (nano) materials released into the body (RES 7.6)
- Compatibility between the materials and substances used and biological tissues, cells, and body fluids taking account of the intended purpose of the device and absorption, distribution, metabolism and excretion

RES 8 on infection and contamination

- Design to
 - allow handling, cleaning, sterilization
 - Reduce exposure to contamination, prevent contamination
 - Easy performance of cleaning and resterilization
 - Clear user indication of sterile state

RES 18: layperson

- Layperson skills
 - Taking into account the variations in technique and environment
- Easy information and any need of training
- Procedure for
 - Testing the functioning of the device
 - Warning of device malfunction

What is a technical standard?

- Provide requirements, specifications, guidelines or characteristics
 - Test methods
 - Acceptance criteria
- Can be used **consistently** to ensure that materials, products, processes and services are fit for their purpose
- ISO has published more than 21k standards
- Other bodies include IEC, ASTM

Some standards in our everyday life

- ISO 8601 date and time format
- ISO 3166 country codes
- ISO 9001 Quality management system

- ISO 7304 Alimentary pasta
 - -2 assessing cooking
- ISO/TC 133 Clothing size system

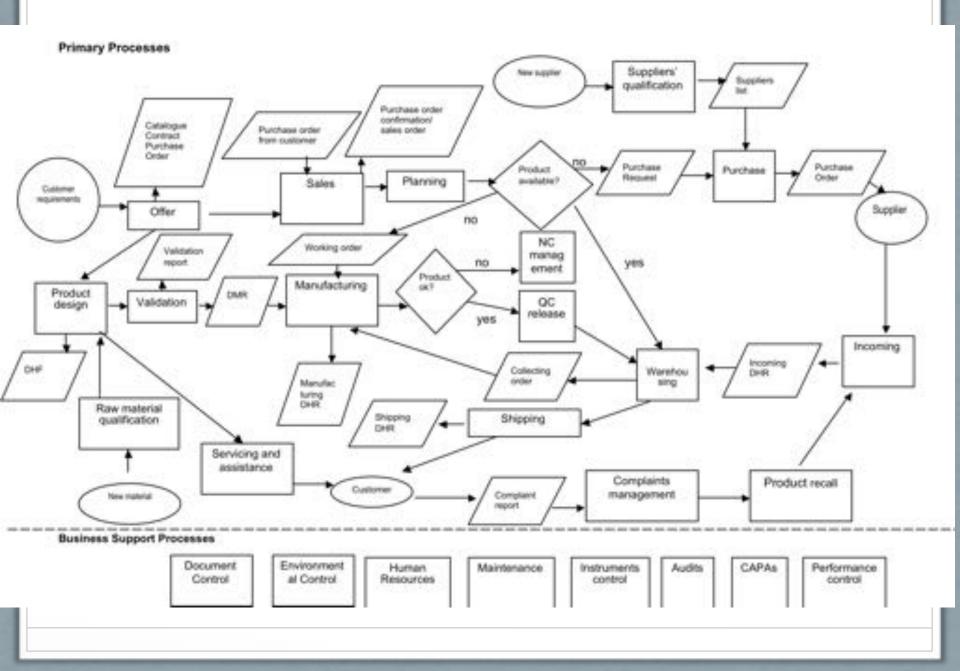
Standards in the medical industry

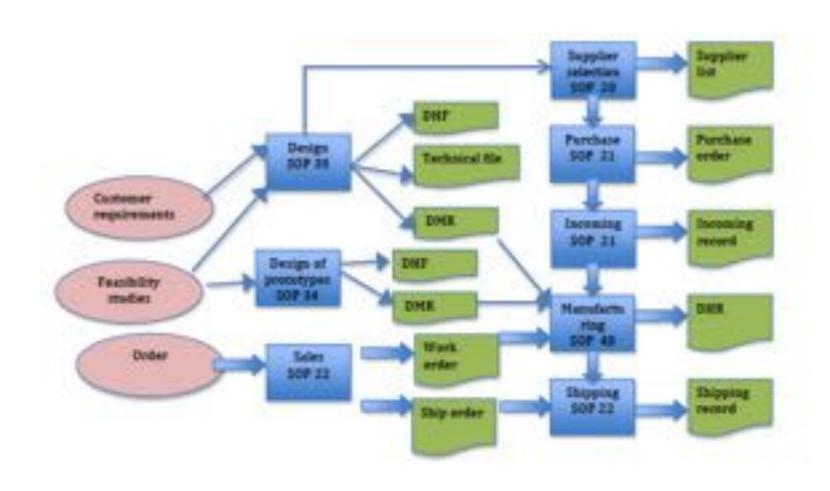
- Device lifecycle is regulated as per:
 - ISO 13485 for Quality Systems
 - ISO 14971 for Risk Management
 - ISO 14155 and various guidelines for Clinical Investigations
- Each product category is then regulated by technical norms
 - For electro medical devices
 - For sterile devices
 - For devices in contact with the body
 - Multiple harmonised and not harmonised norms for technical regulation

Medical Devices Quality Management System

Università di Pisa May 2, 2017 Alice Ravizza www.PGGScientific.com

Manufacturers obligations


- Design control
- Product and process validation
- Clinical evaluation
- Manufacturing as per Good Manufacturing Practice guidelines
- Retention of records
- Continuous surveillance
- Device database
- Strict control on Post Market information and follow up clinical trials


Device life cycle

Typical processes for any company

- Quality Management/ Management review
- Training
- Design and Development
- Production Management
- Service Provision
- Logistic Management
- Customer Relationship Management
- Product Purchasing/ Supplier qualification

Quality standard for design ISO 13485 clause 7

- Clinical and safety requirements: user needs
 - Expected benefit
 - Mechanism of action
- Device technical development
 - Tech drawings
 - Composition
 - SW modules
- Device technical verification and validation
 - Bench test
 - Safety test on animal models (ISO 10993)
 - Design transfer from prototype to industrial scale

Standard for risk management ISO 14971

- Search of potential harmful events or device malfunctions
- Evaluation of probability and of impact on patient health (severity)
- Search of risk control measures (example: safe design, protections and alarms)
- Evaluation of risk-benefit ratio

Standard for biocompatibility ISO 10093

- Assessment of device impact on human body in terms of risk of bio-incompatibility
- Device identification: materials, manufacturing methods, sterility level
- Evaluation of available information
- Planning of test to collect new information
 - Material characterization
 - In vitro
 - In vivo

Manufacturing quality EU GMP ISO 13485

- The device shall be manufactured consistently to the Device Dossier
 - Equivalent to the prototype
 - Constant level of quality
 - Full traceability
- Standard operation procedures for Company management
 - Industrial processes
 - Equipment
 - Personnel

Standard for clinical trials ISO 14155

- Clinical trials on humans: authorized by Ethics Committee
 - Device with favorable risk- benefit ratio for each participant
 - Good statistical significance
- Difficult study design
 - Placebo? Mock device?
 - Number of participants
 - Data from animal models

Any questions, guys?

