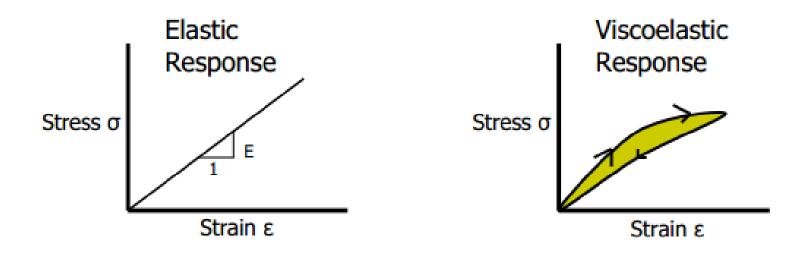


Nano-mechanics for Intelligent Materials (2/2)

Giorgio MATTEI

- Viscoelastic materials exhibit the characteristics of both elastic and viscous materials
 - Viscosity \rightarrow resistance to flow (damping)
 - Elasticity \rightarrow ability to revert back to the original shape
- Elastic vs. viscoelastic stress-strain response



- Time domain
 - Creep response
 - Stress relaxation

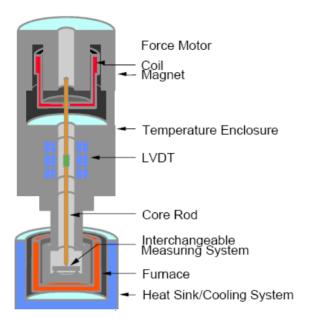
• Frequency domain

- Dynamic mechanical analysis (DMA)
- Dynamic mechanical thermal analysis (DMTA)

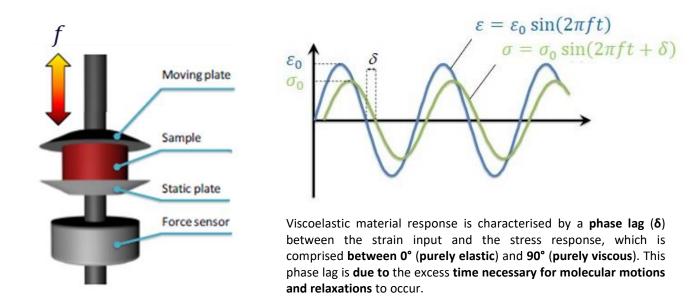
• Strain-rate domain

- Epsilon dot Method
- Stress-rate domain
 - Sigma dot Method

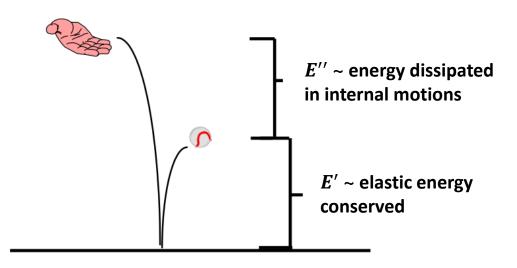
 Dynamic mechanical analysis (DMA) is a standard force-triggered method to determine viscoelastic properties of materials by applying a small amplitude cyclic strain on a sample and measuring the resultant cyclic stress response.



• For a given sinusoidal strain input the resulting stress will be sinusoidal if the applied strain is small enough so that the tissue can be approximated as linearly viscoelastic.

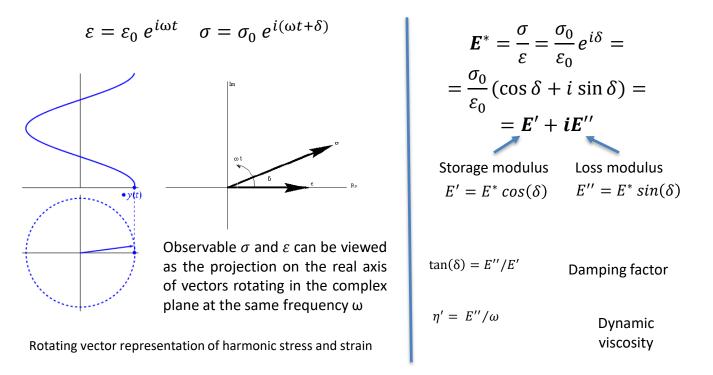


• The dynamic mechanical properties are quantified with the **complex modulus** (E^*), which can be thought as an **overall resistance** to deformation under dynamic loading. The complex modulus is composed of the **storage** (E', elastic component) and the **loss** (E'', viscous component) moduli, that are **additive under the linear theory of viscoelasticity** ($E^* = E' + iE''$).



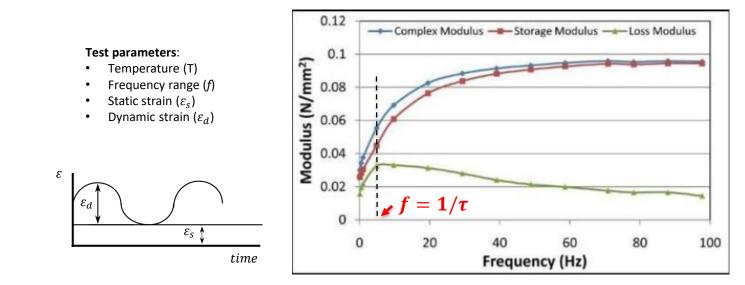
Definitions

• It is convenient to represent the sinusoidal stress and strain functions as complex quantities (called rotating vectors, or **phasors**) with a **phase shift** of δ .



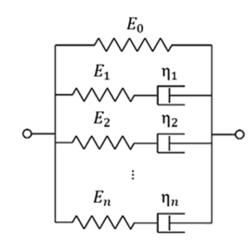
- **Temperature sweep**: Modulus and damping are recorded as the sample is heated
- **Frequency sweep**: Modulus and damping are recorded as the sample is loaded at increasing (or decreasing) frequencies
- Stress amplitude sweep: Modulus and damping are recorded as the sample stress is increased
- Strain amplitude sweep: Modulus and damping are recorded as the sample strain is increased
- Combined sweep: Combinations of above methods

• A sample is held to a **fixed temperature** and tested at **varying frequency**.



• **Peaks** in $tan(\delta)$ or E'' with respect to frequency identify the **characteristic relaxation** frequencies of the viscoelastic sample under testing, defined as $f = 1/\tau$ (where τ is the **characteristic relaxation time**)

• The most general form of linear viscoelastic model is called the **Generalised Maxwell** (GM) model and consists of a pure spring (E_0) with *n* Maxwell arms (i.e. spring E_i in series with a dashpot η_i) assembled in parallel, thus defining a set of *n* different characteristic relaxation times (i.e. $\tau_i = \eta_i/E_i$)

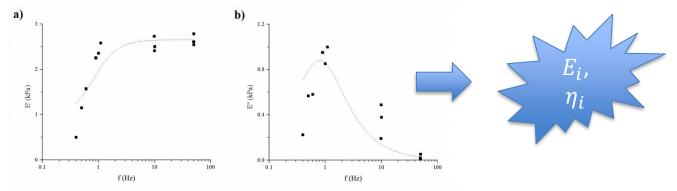


$$H_{GM}(s) = \frac{\overline{\sigma}}{\overline{\epsilon}} = E_0 + \sum_{i=1}^n \frac{E_i \eta_i s}{E_i + \eta_i s}$$

GM model transfer function in the Laplace domain

• Calculate the complex conjugate of the GM modulus (E_{GM}^*) by substituting $s = i \omega = i 2\pi f$ in $H_{GM}(s)$, then split the expression into its real (Re) and imaginary (Im) parts to obtain the frequency-dependent relations for the storage and loss moduli, respectively

• Global fitting with shared parameters (χ^2 minimisation)



Nano-DMA

• Experimental data obtained for a given frequency can be used to compute the frequencydependent storage (E') and loss (E") moduli as:

$$\frac{E'(f)}{(1-v^2)} = \frac{P_0}{h_0} \cos(\phi) \frac{1}{\sqrt{hR}}$$
$$\frac{E''(f)}{(1-v^2)} = \frac{P_0}{h_0} \sin(\phi) \frac{1}{\sqrt{hR}}$$

Herbert EG et al, J. Phys. D. Appl. Phys. 41 (2008)

• Frequency spectra of storage and loss moduli can then be fitted to lumped parameter rheological models to derive material viscoelastic constants as previously described

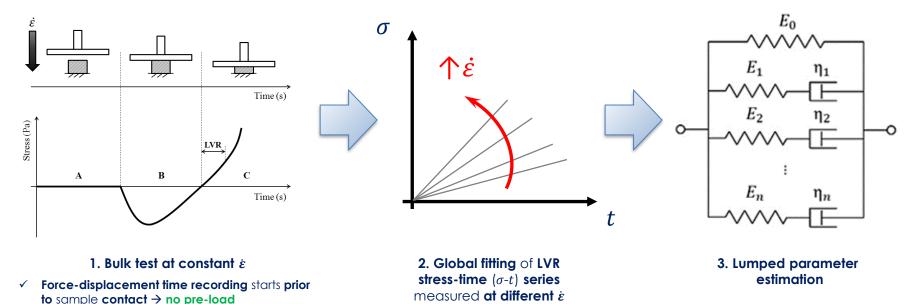
 \checkmark

 \checkmark

Short test duration → no sample deterioration

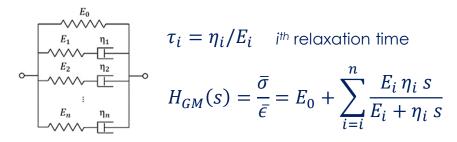
LVR determined through measured σ - ε curves

<u> $\dot{\epsilon}M$ paradigm</u>: characterise the material viscoelastic behaviour testing samples at different constant strain rates ($\dot{\epsilon}$), then analyse $\sigma(t)$ curves within the LVR



Tirella A et al., JBMR A 102 (2014)

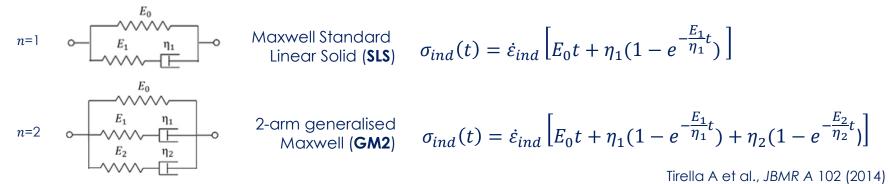
1. Calculate the **transfer function** of a **lumped parameter model** in the Laplace domain



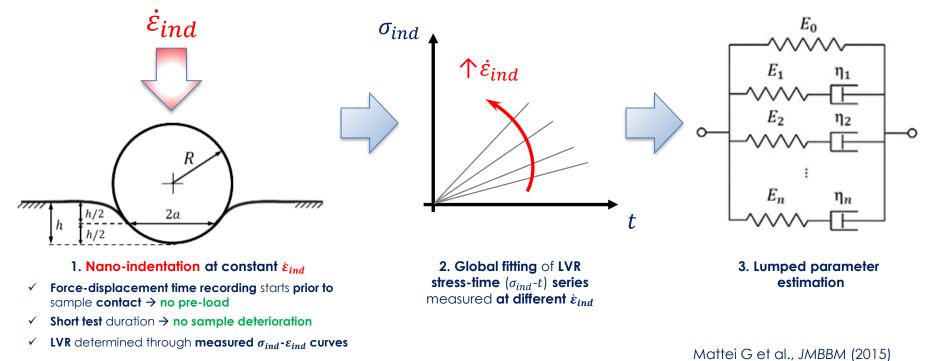
2. Derive the model response to a constant $\dot{\varepsilon}$ input with amplitude $|\dot{\varepsilon}|$ in the Laplace domain

$$\bar{\sigma} = H_{GM}(s) \cdot \frac{|\dot{\varepsilon}|}{s^2}$$

3. Get the $\sigma(t)$ response through Inverse Laplace transformation

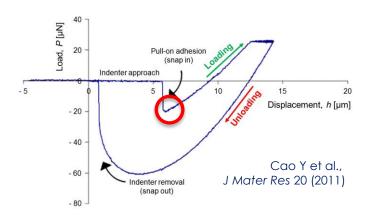


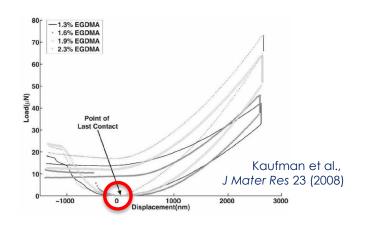
• Estimate material viscoelastic constant through nano-indentation at different constant strain rates ($\dot{\epsilon}_{ind}$), then analyse $\sigma_{ind}(t)$ curves within the LVR



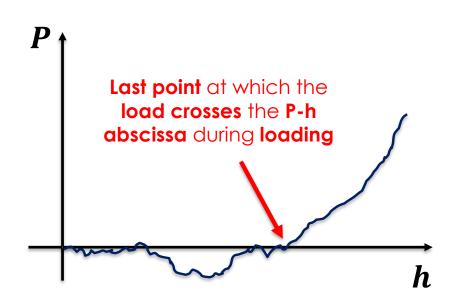
• 1st issue: identifying the initial contact point

Ideal tests should start out of contact with the sample \Rightarrow need of displacement-controlled experiments and post-measurement identification of the initial contact point





1st issue: our <u>solution</u>



Unique identification of the contact point both when

- Snap into contact is poorly evident
- ✓ Noise around zero load is present

Ac. .

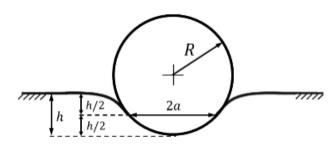
• **2nd issue:** nano- $\dot{\epsilon}M$ needs $\sigma_{ind}(t)$ response to constant $\dot{\epsilon}_{ind}$

Most of the studies define $\dot{\epsilon}_{ind} = \dot{h}/h^{1,2}$ and $\epsilon_{ind} = \sqrt{h/R}^{-3}$, but...

NOT suited for the **nano-***ċ***M**

¹ Haghshenas M et al., Mater Sci Eng 572 (2013) ² Maier V et al., J Mater Res 26 (2011) ³ Basu S et al., J Mater Res 21 (2006)

• 2nd issue: OUr solution



Hertz $P = \frac{4}{3}E_{eff}R^{1/2}h^{3/2}$ Sneddon $h = \frac{a^2}{R}$ $\int \frac{h}{a} \cdot \frac{P}{\pi a^2} = \frac{4}{3\pi}E_{eff}\left(\frac{a}{R}\right) \cdot \frac{h}{a}$ $\left(\frac{1}{E_{eff}} = \frac{1-v^2}{E} + \frac{1-v'^2}{E'} \approx \frac{1-v^2}{E}\right)$

$$\sigma_{ind} = \frac{P}{R\sqrt{hR}}$$

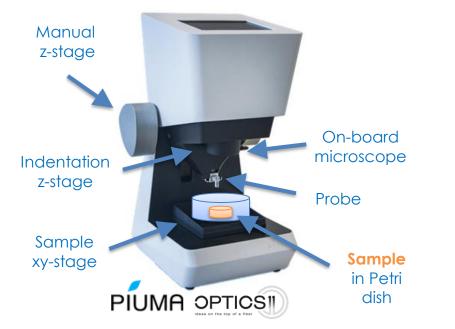
$$\varepsilon_{ind} = \frac{4}{3(1-v^2)} \left(\frac{h}{R}\right)$$

$$\int \sigma_{ind}/\varepsilon_{ind} = E \quad \text{(in case of soft materials where } E' \gg E)$$

$$\checkmark \dot{\varepsilon}_{ind} = \frac{\partial \varepsilon_{ind}}{\partial t} = \frac{4}{3(1-v^2)} \left(\frac{\dot{h}}{R}\right) \quad \text{A constant indentation rate } (\dot{h})$$

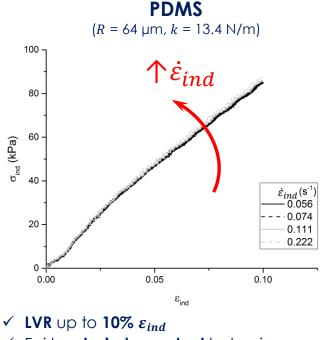
$$\varphi_{ind} = \frac{\partial \varepsilon_{ind}}{\partial t} = \frac{4}{3(1-v^2)} \left(\frac{\dot{h}}{R}\right) \quad \text{A constant indentation rate } (\dot{h})$$

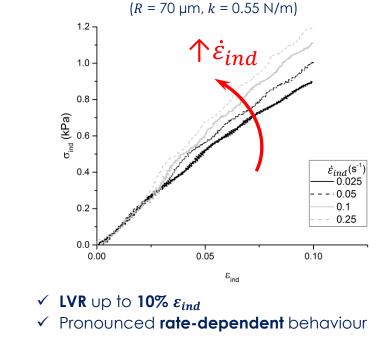
- 2 different samples: PDMS (Sylgard 184, 10:1 base to catalyst), 5% w/v gelatin (type A)
- Constant $\dot{\varepsilon}_{ind}$ tests in dH₂O at RT using the PIUMA Nanoindenter (Optics11)
- Measurements started above the sample surface to avoid pre-stress (different tests on different surface points spaced by 200 µm)



Indentation rate
$$\dot{h}$$
 to obtain a given indentation strain rate $\dot{\varepsilon}_{ind}$
$$\dot{h} = \frac{4}{3(1-v^2)} \left(\frac{\dot{\varepsilon}_{ind}}{R}\right)$$

• Tests at **4 different indentation strain rates** (n = 10 per each $\dot{\epsilon}_{ind}$)

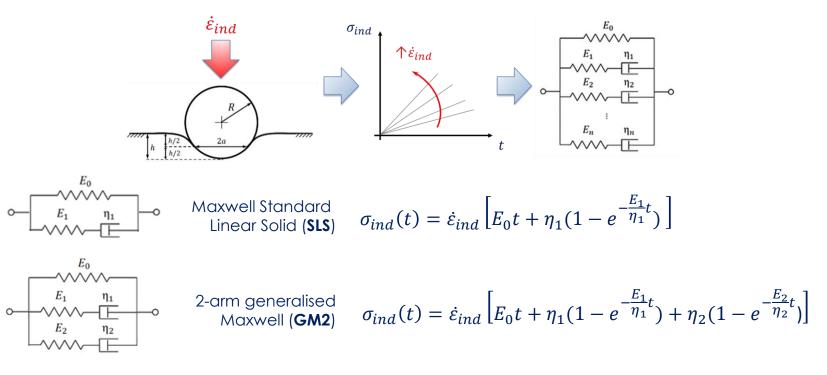




Gelatin

✓ Fairly rate-independent behaviour

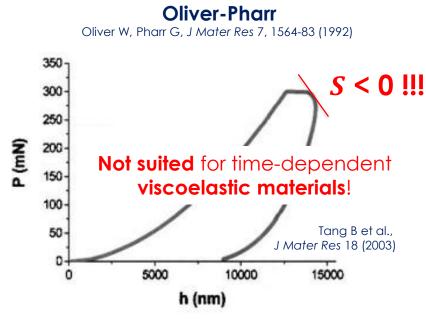
• Indentation stress-time data within LVR obtained at different $\dot{\epsilon}_{ind}$ were analysed with $\dot{\epsilon}M$ global fitting procedure sharing the viscoelastic parameters to estimate



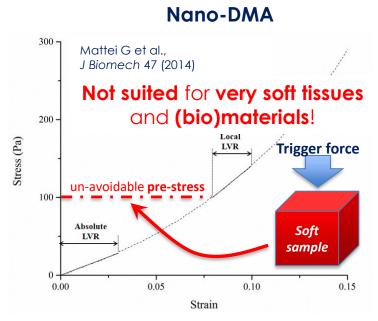
Viscoelastic parameters estimated using the nano- $\dot{\epsilon}M$ (est. value ± standard error)

	PD	MS	Gelatin		
Parameter	Maxwell SLS	GM2	Maxwell SLS	GM2	
E _{inst} (kPa)	$1.74 \cdot 10^3 \pm 1.47 \cdot 10^1$	$1.74 \cdot 10^3 \pm 1.02 \cdot 10^2$	14.08 ± 0.58	$14.08 \pm 1.37 \cdot 10^3$	
E _{eq} (kPa)	$8.82 \cdot 10^2 \pm 8.72 \cdot 10^{-1}$	$5.98 \cdot 10^2 \pm 7.14 \cdot 10^1$	1.84 ± 0.42	4.07·10 ⁻⁴ ± 4.65·10 ²	
$ au_1$ (s)	0.26 ± 4.93·10 ⁻³	0.26 ± 4.93·10 ⁻³	6.90 ± 0.60	$14.78 \pm 2.36 \cdot 10^3$	
$ au_2$ (s)	-	$1.04 \cdot 10^{12} \pm 3.68 \cdot 10^{11}$	-	5.57 ± 1.36·10 ³	
<i>R</i> ²	0.97	0.97	0.99	0.99	

Values in red cannot be considered as significant since they are almost meaningless with very large standard errors, clearly indicating GM2 model over-parameterisation

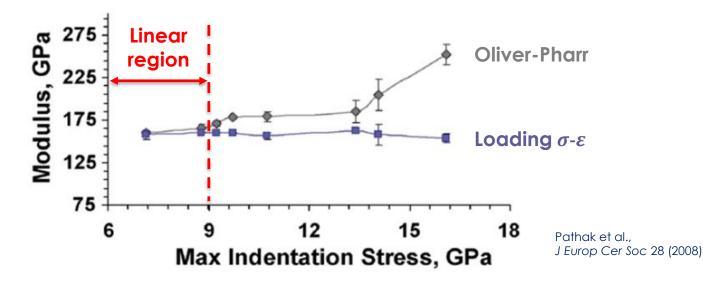


- Elastic-plastic contact model
- Analysis based on the unloading curve using *P_{max}*, *h_{max}* and unloading slope S
- Characterises material elastic properties only



- Micro-scale equivalent of the bulk DMA
- CSM reduces the reliance on unloading curve and provide results as a function of indentation depth
- Need a small but measureable trigger force

- Mechanical properties representative of the "virgin" material
- Constant derived (visco)elastic parameters, regardless of the max load (or displacement) chosen for the experiment



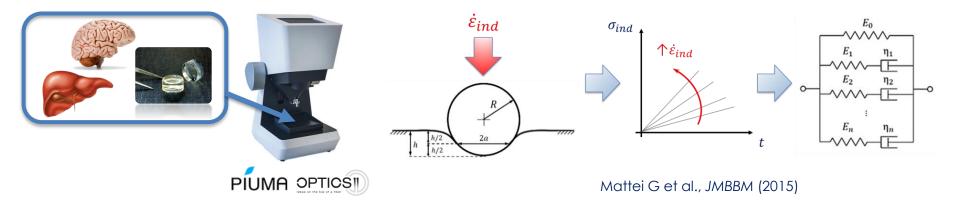
• During unloading only the elastic displacements are recovered

SLS viscoelastic parameters obtained at the micro- and macro-scale* (est. value ± standard error) * macro-scale values are taken from Tirella A et al., JBMR A 102 (2014)

	PDMS			Gelatin		
Parameter	Micro-scale		Macro-scale	Micro-scale	٨	Aacro-scale
	(nano-ĖM)		(ċM) 1	(nano-ĖM)		(ċM) 1
E _{inst} (kPa)	(1.74 ± 0.01)·10 ³	<	(2.55 ± 0.04)·10 ³	14.08 ± 0.58		23 ± 0.45
E _{eq} (kPa)	$(8.82 \pm 0.01) \cdot 10^2$	<	(2.14 ± 0.01) ⋅ 10 ³	1.84 ± 0.42		± 0.10
$ au_1$ (s)	0.26 ± 0.01	<	0.66 ± 0.25	6.90 ± 0.60	>	0.19

- au_1 decrease from macro- to micro-scale observed for PDMS is consistent with literature ^{1,2,3}
- Variations between results at the micro- and macro-scale may be due to
 - real differences between the bulk and surface mechanical properties 1
 - nano-indentation σ_{ind} and $arepsilon_{ind}$ are **not the same** as engineering σ and arepsilon

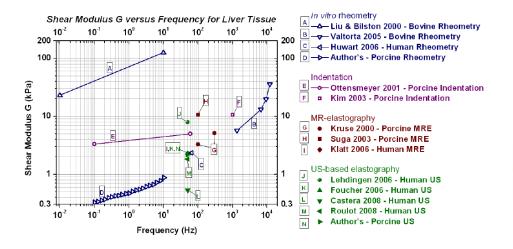
- The nano- εM
 - combines the **advantages** of the $\dot{\epsilon}M$ and **nano-indentation** techniques
 - allows to locally map the viscoelastic properties of "virgin" materials in absence of pre-stress, being advantageous over methods based on the unloading curve or requiring a force trigger
 - very suited for soft biological tissues and biomaterials
 - can be implemented with any displacement-controlled nano-indenter (e.g. Optics 11 PIUMA)



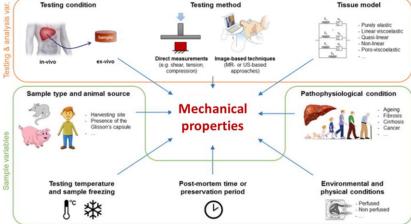
Does measuring in the frequency or strain-rate domain affect mechanical results?

Material mechanical properties

• Little consensus in the literature

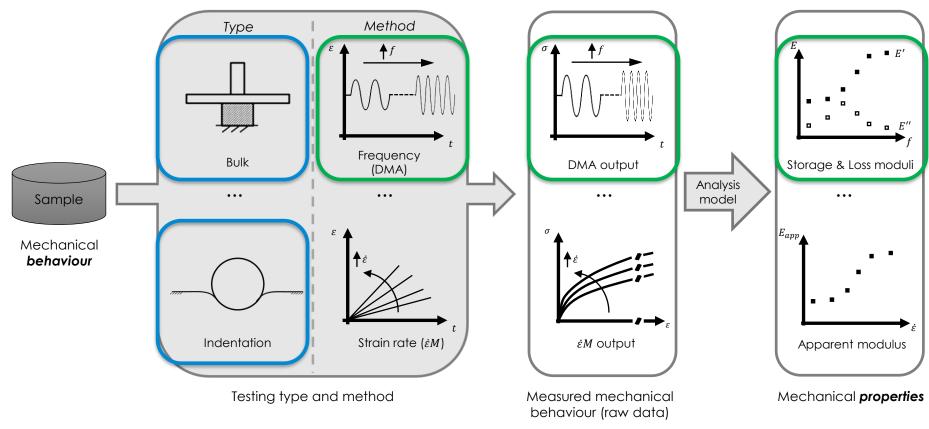


S Marchesseau et al, Progr in Biophys and Mol Biol 103:185-96 (2010)



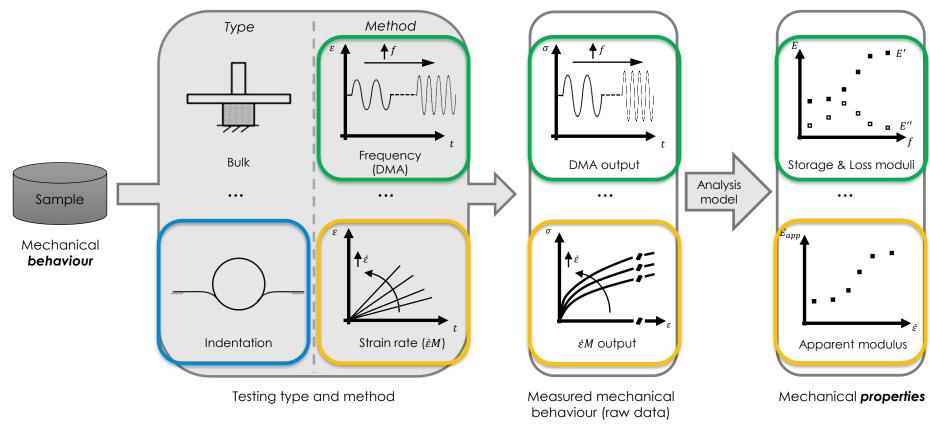
G Mattei and A Ahluwalia, Acta Biom 45:60-71 (2016)

From sample mechanical behaviour to properties



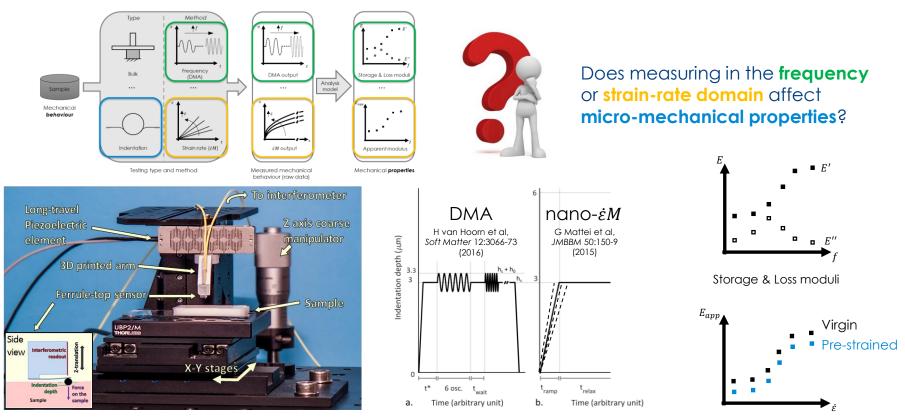
L Bartolini et al, Sci Rep 8:13697 (2018)

From sample mechanical behaviour to properties



L Bartolini et al, Sci Rep 8:13697 (2018)

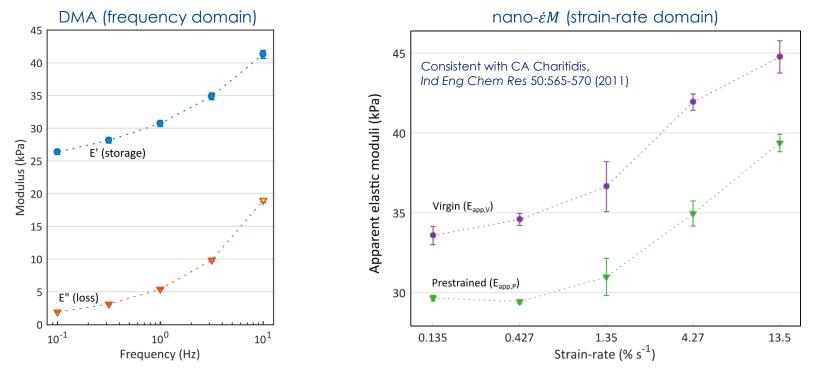
Aim and Strategy



Apparent modulus

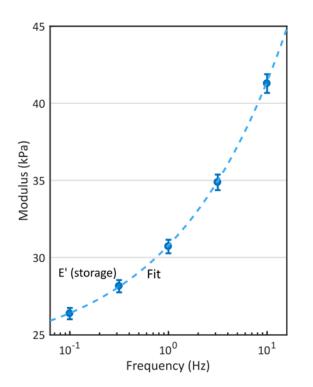
L Bartolini et al, Sci Rep 8:13697 (2018)

• PDMS (Sylgard 184, 50:1) samples tested at 25°C with a 248 µm radius probe



L Bartolini et al, *Sci Rep* 8:13697 (2018)

• Conversion from f to $\dot{\epsilon}$ domain based on SE Zeltman et al, Polymer 101:1-6 (2016), assuming 1 f_c or τ



1) Storage modulus master curve from DMA data

$$E'(\omega) = a \cdot \tanh(b \cdot (\ln(\omega) + c)) + d \qquad \omega = 2\pi f$$

2) $E'(\omega)$ converted into time-domain relaxation modulus

$$\boldsymbol{E}(\boldsymbol{t}) = \frac{2}{\pi} \int_0^\infty \frac{E'(\omega)}{\omega} \sin(\omega t) \, \partial \omega$$

3) Stress-time response to a given strain history

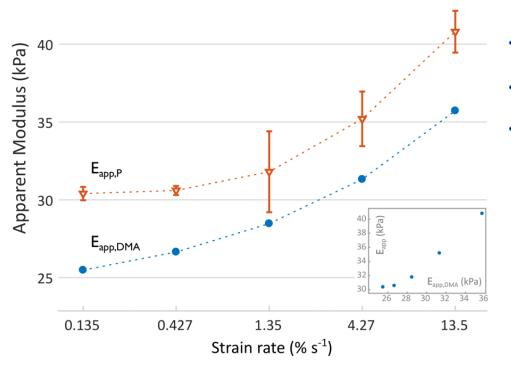
$$\boldsymbol{\sigma}(\boldsymbol{t}) = \boldsymbol{E} * \partial \boldsymbol{\varepsilon} = \int_{-\infty}^{t} \boldsymbol{E}(\boldsymbol{t} - \tau) \frac{\partial \boldsymbol{\varepsilon}(\tau)}{\partial \tau} \partial \tau \quad \xrightarrow{\text{constant } \dot{\boldsymbol{\varepsilon}}} \quad \boldsymbol{\sigma}(\boldsymbol{t}) = \dot{\boldsymbol{\varepsilon}} \int_{0}^{t} \boldsymbol{E}(\tau) \, \partial \tau$$

4) **Stress-strain response** by linear transformation of $\varepsilon = \dot{\varepsilon} \cdot t$

 $E_{app,DMA}(\dot{\varepsilon})$ as stress-strain slope within LVR

L Bartolini et al, Sci Rep 8:13697 (2018)

• DMA-derived apparent elastic moduli $(E_{app,DMA})$ versus nano- $\dot{\epsilon}M$ pre-strained ones $(E_{app,P})$



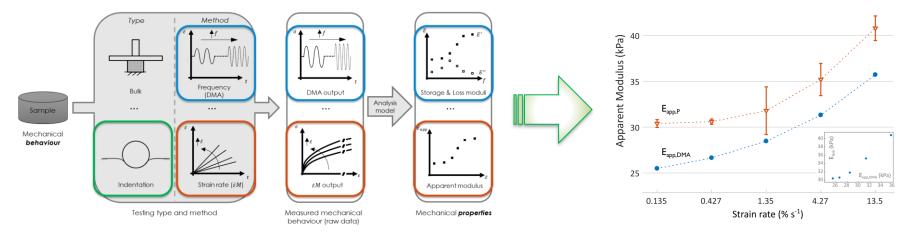
- Increase with strain rate (as expected)
- $E_{app,P} > E_{app,DMA}$, regardless of $\dot{\varepsilon}$
- Optimal correlation (r = 0.99) with almost constant difference between moduli (~10%) (consistent with SE Zeltman et al, Polymer 101:1-6, 2016)
 - Good agreement between f and *i* results
 - Systematic error possibly due to narrow f range attainable by our setup (0.1-10 Hz)

2% increase in d resulted in:

- small master-curve transition upward
- almost perfect match of the moduli

Conclusions

• Frequency and strain-rate domain results directly compared, without any other source of variability



The observed **compatibility allows** to **combine** these **methods** towards a **more comprehensive understanding** of **material viscoelastic** (time-dependent) **behaviour**, critical for several applications (biomechanics, tissue engineering, mechanobiology, ...)

- G. Mattei, G. Gruca, N. Rijnveld, A. Ahluwalia, The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation, J. Mech. Behav. Biomed. Mater. 50 (2015) 150–159. doi:10.1016/j.jmbbm.2015.06.015.
- M.L. Oyen, Nanoindentation of biological and biomimetic materials, Exp. Tech. 37 (2013) 73-87. doi:10.1111/j.1747-1567.2011.00716.x.
- G. Mattei, A. Ahluwalia, Sample, testing and analysis variables affecting liver mechanical properties: A review, Acta Biomater. 45 (2016) 60–71. doi:10.1016/j.actbio.2016.08.055.
- D. Roylance, Engineering viscoelasticity, Dep. Mater. Sci. Eng. Inst. Technol. Cambridge MA. 2139 (2001) 1–37.
- G. Mattei, L. Cacopardo, A. Ahluwalia, Micro-Mechanical Viscoelastic Properties of Crosslinked Hydrogels Using the Nano-Epsilon Dot Method, Materials (Basel). 10 (2017) 889. doi:10.3390/ma10080889.
- H. van Hoorn, N.A. Kurniawan, G.H. Koenderink, D. lannuzzi, Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation, Soft Matter. 12 (2016) 3066–3073. doi:10.1039/C6SM00300A.
- M.L. Oyen, R.F. Cook, A practical guide for analysis of nanoindentation data, J. Mech. Behav. Biomed. Mater. 2 (2009) 396–407. doi:10.1016/j.jmbbm.2008.10.002.
- G. Mattei, A. Tirella, G. Gallone, A. Ahluwalia, Viscoelastic characterisation of pig liver in unconfined compression, J. Biomech. 47 (2014) 2641–2646. doi:10.1016/j.jbiomech.2014.05.017.
- L. Bartolini, D. Iannuzzi, G. Mattei, Comparison of frequency and strain-rate domain mechanical characterization, Scientific Reports 8 (2018) 13697. doi: 10.1038/s41598-018-31737-3.

Contacts

Giorgio MATTEI

Assistant Professor in Bioengineering

University of Pisa Dept. of Information Engineering Largo Lucio Lazzarino 1 56122 Pisa – Italy

Phone: +39 050 2218239 Mail: giorgio.mattei@unipi.it

