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Abstract: This analysis deals with advances in tissue-
engineering models and computational methods as well as
with novel results on the relative importance of ‘‘control-
ling forces’’ in the growth of organic constructs. Specifi-
cally, attention is focused on the rotary culture system,
because this technique has proven to be the most practical
solution for providing a suitable culture environment
supporting three-dimensional tissue assemblies. From a
numerical point of view, the growing biological specimen
gives rise to a moving boundary problem. A ‘‘volume-of-
fraction’’ method is specifically and carefully developed
according to the complex properties and mechanisms of
organic tissue growth and, in particular, taking into
account the sensitivity of the construct/liquid interface to
the effect of the fluid-dynamic shear stress (it induces
changes in tissue metabolism and function that elicit a
physiological response from the biological cells). The
present study uses available data to introduce a set of
growth models. The surface conditions are coupled to the
transfer of mass and momentum at the specimen/culture-
medium interface and lead to the introduction of a group of
differential equations for the nutrient concentration around
the sample and for the evolution of tissue mass displace-
ment. The models are then used to show how the
proposed surface kinetic laws can predict (through
sophisticated numerical simulations) many of the known
characteristics of biological tissues grown using rotating-
wall perfused vessel bioreactors. This procedure provides
a validation of the models and associated numerical
method and also gives insight into the mechanisms of
the phenomena. The interplay between the increasing size
of the tissue and the structure of the convective field is
investigated. It is shown that this interaction is essential in
determining the time evolution of the tissue shape. The
size of the growing specimen plays a critical role with
regard to the intensity of convection and the related shear
stresses. Convective effects, in turn, are found to impact
growth rates, tissue size, and morphology, as well as the
mechanisms driving growth. The method exhibits novel
capabilities to predict and elucidate experimental observa-
tions and to identify cause-and-effect relationships. B 2003
Wiley Periodicals, Inc. Biotechnol Bioeng 84: 518–532, 2003.

Keywords: tissue engineering; rotating vessel; growth ki-
netics; fluid motion; mathematical models; moving boun-
dary method; morphology evolution

INTRODUCTION

Given the current knowledge in growing organic tissues as

model systems for controlled studies of tissue development,

and the certain future developments in growing biological

tissues as a potential source of functional constructs for organ

repair, the concept of tissue engineering is nearing reality.

Tissue engineering is a new field that enables tissue

equivalents to be created from isolated cells in combination

with biomaterials and bioreactor culture vessels. Potentially

it can provide a basis for systematic, controlled in vitro

studies of tissue growth and function as well as detailed

knowledge of many important problems, including the

chemistry and mechanics of healthy organs and of cancers,

infectious diseases, immune system failures, etc. Moreover,

the constructs obtained by these techniques will someday

be used for treatment of damaged human tissues and/or

healthy organs.

A key factor in this new field of engineering involves how

to define the properties of the artificial environments wherein

biological tissues are grown in order to achieve the best

possible conditions for growth. Organic tissues are very

sensitive to their environment and, if exposed to sufficiently

severe conditions, may denature and/or degrade. Often, they

must be constantly maintained in a thoroughly hydrated state

at or near physiological pH and temperature. For these

reasons, very gentle and restricted techniques have been used

by investigators.

A challenge that has plagued tissue science throughout

its short history, however, is that most of these gentle cell-

culture techniques produce flat, one-cell-thick specimens

that offer limited insight into how cells work together.

Moreover, without a proper three-dimensional (3D) assem-

bly, epithelial cells (the basic cells that differentiate tissue

into specific organ functions) lack the proper clues for grow-

ing into the variety of cells that make up a particular tissue.
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The most promising method to solve these problems seems

to be the rotating-wall perfused vessel bioreactor (RWPV), a

can-like vessel equipped with a membrane for gas exchange

and ports for media exchange and sampling. As the

bioreactor turns, the cells continually fall through the

medium. Under these quiet conditions, the cells ‘‘self-

assemble’’ to form clusters that sometimes grow and

differentiate much as they would in the body. Thus, the fluid

medium neutralizes most of gravity’s effects and encourages

cells to grow naturally. In fact, the rotating bioreactor was

invented as a model of microgravity effects on cells.

Ground tests of the bioreactor have yielded 3D biological

specimens approximating natural growth, a striking change

from the pancake shapes of traditional cultures. As cells

replicate, they ‘‘self-associate’’ to form a complex matrix of

collagens, proteins, fibers, and other chemicals. Eventually,

on Earth, the clusters become too large to fall slowly, which

demonstrates that research must be continued in the true

weightlessness of space.

Excellent and surprising experiments were carried out by

Freed et al. (1997), who grew specimens of bovine cartilage

tissue under both normal (Earth) and microgravity conditions

(Mir), and reported that initially disk-like specimens became

spherical in space, whereas constructs grown on Earth

maintained their initial disk shape. Experience aboard Mir

turned microgravity bioreactor research into a mature

science and proved that the gravity effect may play a crucial

role in determining the properties and the growth conditions

of organic tissues.

Further progress in creating proper environments for the

growth of the tissues requires an understanding of how

chemical, mechanical, and other environment factors

influence growth. Recent advances in cellular and molecular

biology have furthered our knowledge of the biochemical

aspects of this problem. Moreover, theories have been

proposed to take into account mechanical factors.

According to some investigators (Rodriguez et al., 1994;

Taber, 1998a, 1998b; Taber and Chabert, 2002), growth and

remodeling in tissues may be modulated by mechanical

factors such as internal stress. A general continuum

formulation for finite volumetric growth in soft elastic

tissues, based on their internal ‘‘mechanical state,’’ has thus

been proposed. This dependence has been introduced

through the so-called ‘‘growth law,’’ which is a constitutive

equation for the rate of change of the growth tensor, and

describes its dependence on mechanical quantities such as

stress, strain, and strain energy. The growth tensor is

determined from the growth law. Two excellent implemen-

tations of this theory have been used to model continuous

growth of soft tissues. The first, developed by Taber and

coworkers (Taber, 1998a, 1998b; Taber and Chabert, 2002),

has been used to investigate the growth of the heart, arteries,

and skeletal muscles. In this approach, the growth law was

defined on an initial fixed reference configuration for the

entire growth process. In the second method, proposed by

Rodriguez et al. (1994), the growth model was defined on the

current configuration of the loaded, growing material. This

method was used to elucidate how residual stress arises

during growth and how, in turn, growth is affected by stress in

the tissue.

Other theories have focused on the transport of gas in the

culture medium surrounding the growing tissue, because it is

proposed that this factor also may be important. The role

played by the supply of gas on the rates of synthesis was

modeled by Obradovic et al. (2000). They developed an

excellent model taking into account the transport of dissolved

oxygen in the feeding solution and, in particular, the effect of

the gas tension. It was found that more efficient gas transport

in both the culture medium and at the construct surfaces

stimulates rapid tissue growth, whereas cultivation at low

oxygen tension has the reverse effect.

The basic approach used in these theories was to combine

published experimental results with relatively simple

theoretical models. First, trends in the data available are

used to postulate qualitatively biomechanical principles for

growth. Then, explicit growth laws are proposed and tested

for their ability to predict known patterns of growth,

leading to important theoretical results and agreement with

the experiments.

It is important to stress that the available ‘‘mechanical’’

theories have focused on what happens inside the tissue,

whereas the biomechanical laws that govern soft tissue

growth in terms of surface incorporation/conversion

conditions (interface kinetics of the growth) remain poorly

understood. Superimposed on this is the poor state of our

current understanding of the effect of ‘‘fluid-dynamic’’

shear forces. In contrast, on the basis of experimental

results (Freed et al., 1997), these effects seem to play a

crucial role in determining the final shape and the size of

the specimens.

The aims of the present study are: (1) to introduce a

mathematical model to handle the complex phenomena

related to the growth of organic tissues that takes into account

(a) the main features of the bioreactor used for growth (in

particular, the fluid-dynamics), (b) the transport of nutrients

in the feeding solution and how they are converted in

biological tissue, and (c) the mass variation of the specimen;

(2) to shed some light on the complex interplay between the

increasing size of the tissue and the structure of the

convective field inside the reactor; (3) to make available to

the scientific community a numerical method based on this

model; (4) to validate the model through comparison of the

numerical results with well-known and important experi-

mental ones.

The present investigation is the first attempt to analyze in

detail these (fluid-dynamic) behaviors.

MATERIALS AND METHODS

The Rotating Vessel

This rotating vessel device was developed by NASA within

the framework of the ideas and concepts originally pointed
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out in the pioneering works of Briegleb (see, e.g., Briegleb

[1988], fast-rotating clinostat technique). Already, by the

early 1960s, Briegleb recognized the need to study the

influence of weightlessness on living cells. Access to real

weightlessness was always very limited, but Briegleb and

coworkers (Briegleb, 1988, 1992; Hemmersbach-Krause

et al., 1993) became the first to use a fast-rotating clinostat

for research with single mammalian cells and unicellular

organisms under functional weightlessness. In their studies,

two fast-rotating clinostat microscopes (CLIMIs) were

constructed, which were subsequently used by other in-

vestigators (Cogoli, 1992; Kordyum, 1994; Todd and Grue-

ner, 1992).

Cells derived from diverse tissue sources lose their

specialized features and dedifferentiate when grown under

traditional two-dimensional cell culture conditions. Over

the years suspension culture has become the most popular

method of preventing this problem. There is now a rich and

diverse selection of available culture vessels for suspension

culture (Hammond and Hammond, 2001).

Several recent reviews have summarized the use of

suspension culture (Helmrich and Barnes, 1998), scale-up

of suspension culture for industrial use (Mather, 1998),

application to anchorage-dependent cells by the use of

microcarriers (Gao et al., 1997a; Pollack et al., 2000), and

automation of roller-bottle forms of suspension culture

(Kunitake et al., 1997).

NASA investigators brought together the various elements

of suspension culture (continuous sedimentation of particles

through culture medium, suspension of cells and micro-

carriers without inducing turbulence, a rotating-wall vessel,

and a coaxial oxygenator to allow gas exchange by dissolved

gases without undesired bubbles) for the first time. This led to

an efficient (but simple) design for suspension culture vessels

embodied in the rotating-wall perfused vessel, a horizontally

rotating cylindrical culture vessel with a coaxial tubular

oxygenator (Fig. 1). These vessels have characteristic

features that determine their utility. First, fluid flow is near

solid body at most operating conditions. If the inner and outer

cylinders of the rotating-wall vessel rotate at the same

angular velocity (rpm), then the (radial) laminar-flow fluid

velocity gradient would be minimized. Second, the culture

medium is gently mixed by rotation, avoiding the necessity

for stirring vanes. The mixing is the result of a secondary flow

pattern induced by particle sedimentation through the fluid

media (at gravity conditions) or by laminar flows established

when differential rotation rates are chosen for the vessel

components (microgravity conditions).

The rotating-wall perfused vessel was invented to grow

cells in space, with the additional benefit of working in

Earth’s gravity. It simulates the weightless environment of

space while on Earth by putting biological constructs in a

growth medium that constantly rotates and keeps them in

endless freefall.

Clearly, the rotating vessel does not actually cancel

gravity, but ideally maintains continual freefall conditions

similar to those experienced by astronauts in the micro-

gravity of space. Earth-based bioreactor cultures typically

maintain cell growth for at least 60 days. On Earth, a

sample then becomes so large (about 1 cm) that it is no

longer suspended. In long-duration space missions, large-

sample growth in bioreactors can be investigated to assess

extended growth.

Due to the different technique used to guarantee mixing

of nutrients in the feeding solution (dynamic seeding of

constructs through the liquid posed in solid body rotation

on Earth and differential rotation of the inner and outer

vessel walls in space) the structure of the flow field changes

completely according to the environment (normal gravity

or microgravity conditions).

Within the framework of the aforementioned argument,

this study aims to shed light on the surprising experimental

results obtained by Freed et al. (1997). In particular, attention

is focused on on-ground conditions, because most of the

available experimental data for tissue engineering come from

on-ground experimentation.

To optimize suspension culture, these aspects need to be

expressed in simple mathematical relationships, and then

quantitated and controlled.

Experiments and Terminal Velocity

The RWPV approach involves seeding cells onto 3D

polymer scaffolds. The cell/scaffold constructs are placed

in the rotating bioreactor that supplies the cells with nutrients

and gases and removes wastes. The scaffold induces cell

differentiation and degrades at a defined rate (it slowly

biodegrades as the cells develop into a full tissue), whereas

the bioreactor maintains controlled, in vitro culture con-

ditions that permit tissue growth and development.

Concentration gradients within the bioreactor are mini-

mized by the convection associated with gravitational

construct settling during solid body rotation of the bioreactor

in unit gravity. The vessel is rotated as a solid body in a

horizontal plane around its central axis. The rotation rate can

be adjusted so as to suspend each tissue construct about a

fixed position within the vessel as viewed by an external

observer (Obradovic et al., 2000). This condition guarantees

dynamic equilibrium of the operative forces gravity, buoy-

ancy, and drag, while maintaining each tissue construct in aFigure 1. Sketch of the rotating bioreactor (on-ground conditions).
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state of continuous freefall. Thus, a tissue construct falling

through the culture media in the RWPV is fed as it effectively

sieves through the nutrient media.

On Earth, the settling of diskoid scaffolds tends to align

their flat, circular areas perpendicular to the direction of

motion (Freed et al., 1997). To minimize shear and

turbulence, usually the terminal velocity of the constructs

is minimized by choosing scaffolds and culture media as

close in density as possible.

Many data on the fluid-dynamic environment in rotating-

wall perfused vessel bioreactors can be found in the excellent

analyses done by Kleis et al. (1990), Wolf and Schwartz

(1991, 1992), Gao et al. (1997a, 1997b), Meaney et al.

(1998), Begley and Kleis (2000), Pollack et al. (2000),

Hammond and Hammond (2001), and Coimbra and

Kobayashi (2002).

These studies concern mainly the case of ‘‘small’’

aggregates, however, which have motion and dynamics that

are quite different from those of the ‘‘large’’ constructs

cultivated by Freed et al. (1997). Many investigators make

cell aggregates rotate around the core of the vessel instead of

allowing them to hover at fixed points. For the sake of

completeness it should be pointed out that particles cultivated

in suspension culture generally do not maintain an approxi-

mately steady position within the vessel, but rather they

follow almost circular trajectories. Also, under these

conditions, some equilibrium positions would exist within

the reactor (these special points behave as ‘‘attractors’’ for the

particles). In this case, however, tangential Coriolis-induced

motion is significant and leads to spiraling of particles in the

fluid stream with respect to a laboratory reference frame. Due

to this effect, small particles tend to fall on large-radius orbits,

which periodically strike the vessel wall.

In the case of relatively large cell aggregates and/or large

scaffolds the behavior may be different, as demonstrated by

Freed et al. (1997). Under some conditions the rotation rate

can be adjusted so as to let each tissue construct ‘‘hover’’

about a stationary position with respect to a laboratory

reference system (present case), even if small oscillations

with respect to this position and impact with the wall may

occasionally occur. For this case, many (quasi-stable)

equilibrium positions are possible between the central

oxygenator and the lowest portion of the wall (see Fig. 1).

The prefix ‘‘quasi’’ is used because the constructs actually

‘‘circulate’’ in small loops around the aforementioned

stationary fixed positions, due to the characteristic hydro-

dynamic patterns of disk settling. Gao et al. (1997a) noted

that suspension of the scaffolds has a ‘‘periodic nature’’;

however, because the oscillations of the relative velocity are

slight (in agreement with the present assumptions), they

concluded that this value may be assumed almost constant.

For these reasons, we simulate the experiments of Freed

et al. (1997) and Obradovic et al. (2000); a simplified model

is assumed, based on the results of Clift et al. (1978). In the

range 1 < Re < 103, the terminal velocity, U, of a cylinder

having diameter d and thickness L (aspect ratioE= L/d), free-

falling with its symmetry axis parallel to the direction of

motion (and of gravity) through a liquid with kinematic

viscosity, r, can be computed according to:

CDRe2 ¼ 2gDUEd3

Ur2
ð1aÞ

CD ¼ 64

kRe
ð1 þ 0:138 Re0:792Þ ð1bÞ

where D U is the density gradient between the cylindrical

body and the surrounding fluid and:

Re ¼ Ud

r

is the diameter-based Reynolds number (Re) associated

with dynamic construct sedimentation. These equations

provide a simple and efficient method for computation of

terminal velocity. Clearly, the direction of motion is not

exactly parallel to the direction of gravity as assumed by Eqs.

(1a) and (1b). Generally, the terminal velocity vector has

a component along the direction of gravity and also a

perpendicular component. The latter is small, however,

and for this reason it is not taken into account in the

present computations, even if it could explain some weak

deviations with respect to the axisymmetric shape that

sometimes characterize the specimen (see Numerical

Simulations subsection).

Under these assumptions, the mechanism of equilibrium is

very simple: The net weight of the tissue is balanced by the

viscous resistance and the flow around the construct is

axisymmetric [Eq. (1a) and (1b)]. According to Galileo’s

invariance principle, this situation corresponds (see Numeri-

cal Simulations) to the specimen at rest as seen in a laboratory

frame and the fluid moving upward in the direction opposite

to the gravity force with velocity equal to U.

Other effects such as Coriolis forces can be considered

negligible for the dynamics of the scaffold/construct

because the major direct determinants of the terminal

velocity in this case are gravity and viscous resistance (see

Hammond and Hammond, 2001).

In the experiments done by Freed et al. (1997) and

Obradovic et al. (2000) cartilage was used as a model

musculoskeletal tissue. Cartilage was selected because of its

resilience and low metabolic requirements. Their method

was based on cartilage cells (chondrocytes) and biodegrad-

able polyglycolic acid (PGA) scaffolds of cylindrical shape.

Chondrocytes were isolated from bovine calf articular

cartilage and seeded onto the fibrous, biodegradable

polyglycolic acid scaffolds (these disk-like structures mimic

the body’s internal environment). PGA scaffolds (the same

material used to make Dexon absorbable surgical sutures)

were 0.5-cm-diameter � 0.2-cm-thick disks formed as a

97% porous mesh of 13-Am-diameter fibers. Culture

medium consisted of Dulbecco’s modified Eagle medium

(DMEM) with 4.5 g/L glucose and other substances (see

Freed et al. [1997] for further details on the composition of

the culture medium).
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For this case, the density difference between the construct

and the feeding solution was:

DU ¼ 4:9 10�2½g cm�3� ! 2gDUEd3

Ur2
¼ 7:4 104

Eqs. (1a) and (1b), solved using a Newton–Raphson

method, give:

Re ¼ Ud

r
¼ 290 ! U ¼ 4:64 ½cm=s�

and this velocity is in agreement with the average vessel

rotation rate (i 30 rpm; see Obradovic et al. [2000]) that was

used by the investigators to maintain each tissue construct

floating at an approximately steady position within the

vessel. In fact, the bioreactor was configured as the annular

space between a 5.75-cm-diameter polycarbonate outer

cylinder and a 2-cm-diameter hollow inner cylinder with a

porous wall. This corresponds to an average fluid velocity of

i 6 cm/s, which is in reasonable agreement with the

terminal velocity computed according to Eqs. (1a) and (1b).

Mathematical Models and Numerical Technique

From a numerical point of view, the growing tissue gives rise

to a moving boundary problem. Moving boundary problems

remain a challenging task for numerical simulation, prompt-

ing much research and leading to many different solutions.

The numerical simulations of these problems require a

discretization or nodalization to allow numerical treatment

on computers. There are two fundamentally different

approaches. On the one hand, Eulerian methods use a frame

of reference (discretization grid or mesh, control volumes,

etc.) fixed in space, and matter moving through this frame of

reference. Lagrangian methods, on the other hand, use a

frame of reference (marker particles) fixed to and moving

with the matter.

The first method capable of modeling multiphase flow,

separated by a moving interface, was the marker and cell

(MAC) of Harlow and Welch (1965). This is in fact a com-

bination of a Eulerian solution of the basic flow field, with

Lagrangian marker particles attached to one phase to

distinguish it from the other phase. Although the staggered

mesh layout and other features of the MAC have become a

model for many other Eulerian codes, the marker particles

proved to be computationally too expensive and have been

rarely used.

In the specific case of growth of organic tissues from

feeding solutions, and in order to introduce novel numerical

techniques, one must generally accomplish at least two

things simultaneously: (a) determine the concentration field

of nutrients in the liquid phase; and (b) determine the

position of the interface between the tissue and the culture

medium. According to the technique used to address (a) and

(b), in principle, the numerical procedures able to solve

these problems can be divided into two groups:

1. Multiple region solutions utilizing independent equations

for each phase and coupling them with appropriate

boundary conditions at the tissue/liquid interface. This

approach to the problem takes the point of view that the

interface separating the bulk phases is a mathematical

boundary of zero thickness where interfacial conditions

are applied. These interfacial conditions couple to the

concentration equations in the bulk and this system of

equations and boundary conditions provides a means to

address (a) and (b). Difficulties arise when this technique

is employed, because, in this case, in the vicinity of the

growing construct front (phase change), conditions of

mass flux and velocity evolution must be accounted for.

This effectively rules out application of a fixed-grid

numerical solution, because deforming grids or trans-

formed coordinate systems are required to account for the

position of the tissue surface.

2. Single region (continuum) formulations (or ‘‘phase-

field’’ models), which eliminate the need for separate

equations in each phase, by establishing conservation

equations that are universally valid. Theoretically, the

major advantage of single region formulations is that they

do not require the use of quasi-steady approximations,

numerical remeshing, and coordinate mapping.

In a phase-field model, a phase-field variable, f, which

varies in space and time is introduced to characterize the

phase of the material. In place of the ‘‘sharp’’ transition from

biological constructs to feeding liquid that would character-

ize the multiple region formulations, here the phase-field

varies smoothly but rapidly through an interfacial region. In

addition, in place of the interfacial jump conditions used in

the multiple description, a differential equation applied over

the entire computational domain governs the evolution of f.

The effect is a formulation of the free boundary problem that

does not require the explicit application of interfacial con-

ditions at the unknown location of a phase boundary, which

is why this strategy has been adopted in the present study.

The first method capable of modeling complex multiphase

flow separated by a moving interface, and capable of

undertaking a fixed-grid solution without resorting to

mathematical manipulations and transformations, was the

aforementioned marker and cell (MAC) of Harlow and

Welch (1965). Instead of MAC, however, volume-of-fluid

methods (VOF) and level-set methods have became popular

in recent years. (For a very comprehensive discussion

dealing with the genesis and evolution of these Eulerian

methods, see Rider and Kothe [1998], Sethian [1999], Osher

and Fedkiw [2002], and Gueyffier et al. [1999].) In

particular, these approaches have had widespread use for

the simulation of typical problems associated with gas/liquid

or liquid/liquid systems where surface tension effects play a

‘‘critical role’’ in determining the shape of the fluid/fluid

interface and/or its motion. On the other hand, ‘‘enthalpy

methods’’ and similar techniques, taking into account the

release or absorption of latent heat, have been successfully

applied to the case of thermal phase change problems

characterized by the presence of moving solid/melt inter-

faces, due to the heating or the cooling of the system under
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investigation (Beckermann et al., 1999; Bennon and Incro-

pera, 1987; Kim et al., 2000; Kothe et al., 1997; Lappa and

Savino, 2002; Udaykumar et al., 1999).

Nevertheless, a complete numerical method aimed at the

(‘‘moving boundary’’) simulation of growth of biological

constructs in the frame of the new field of tissue engineering

is still missing.

Organic Tissue Growth Volume-of-Fraction Method
(OTGVOF)

The OTGVOF method, which, similar to VOF and enthalpy

methods, is a single region formulation, allows a fixed-grid

solution to be undertaken, and is therefore able to utilize

standard solution procedures for the fluid-flow and species

equations directly, without resorting to mathematical

manipulations and transformations.

This method accounts for the organic solid mass stored in

the generic computational cell by assigning an appropriate

value of f to each mesh point (f = 1 biological tissue, f = 0

feeding solution, and 0 < f < 1 for an interfacial cell). The

key element for the OTGVOF method is its technique for

adjourningf. Upon changing phase, thef-value of the cell is

adjusted to account for mass absorption, with this adjustment

being reflected in the concentration distribution of nutrients

in liquid phase as a sink. The modeling of these phenomena

leads to the introduction of a group of differential equations,

strictly related, from a mathematical point of view, to the

‘‘kinetic conditions’’ used to model mass transfer at the

tissue surface.

Several studies have shown that growth rates are sensitive

to many parameters, including temperature, defect forma-

tion, shear forces, surface orientation, etc. This problem is

very complex and poorly understood.

Growth proceeds by the incorporation of growth units

(atoms, molecules, or small aggregates) from the feeding

solution to the biological construct. Nutrients available in the

culture medium are incorporated and converted into the

tissue main components. This incorporation produces a

concentration depletion zone around the specimen. The size

and shape of the depletion zone are controlled by the coupled

transport of the feeding species in solution to the growing

surface and the processes allowing these species to be

‘‘incorporated’’ into the tissue matrix.

In the case of protein crystals (Lappa, 2003; Pusey et al.,

1986; Rosenberger, 1986), it is well known that the growth

rate (i.e., the surface growth kinetics) depends on the

steepness of the feeding concentration gradient and that this

gradient, in turn, depends on the degree of supersaturation.

By analogy with these models it is reasonable to assume that

the concentration of nutrient at the tissue surface must satisfy

a condition, such as:

D
@C

@n

����
i

¼ �Ci ð2Þ

where Ci is the concentration of the nutrient (in the

experiments of Freed et al. [1997] it is glucose) at the

construct/liquid interface, D is the related diffusion coef-

ficient, � is a ‘‘kinetic coefficient’’ having the dimensions of

a velocity (e.g., centimeters per second), and n denotes the

direction perpendicular to the sample surface. In the case of

biological tissue growth, the role played in the case of organic

crystals by the degree of supersaturation has to be replaced by

the local value of concentration of nutrient in liquid phase.

The growth rate (e.g., Lappa, 2003; Pusey et al., 1986) is

defined as:

u ¼ D

Us

@C

@n

����
i

ð3Þ

where Us is the total density of the solution and C satisfies

Eq. (2).

If Ci = 0, no net increase in the proportion of solid phase

can accrue because nutrients are not available (the tissue does

not grow). In contrast, if Ci > 0, tissue growth occurs and the

rapidity of the phenomena is driven by the value of the kinetic

coefficient, �.

Note that this model, introduced herein by analogy with

models for organic crystal growth, ignores the fact that,

according to biomechanical growth laws proposed in the case

of soft tissues (Fung, 1990; Taber, 1998), the rate of growth

must depend on the stresses. For instance, the fluid shear

stresses generated by blood flow in the vasculature can

profoundly influence the phenotype of the endothelium by

regulating the activity of certain flow-sensitive proteins

(e.g., enzymes) as well as by modulating gene expression

(Topper and Gimbrone, 1999). This ‘‘physical force’’ can

induce changes in cell metabolism and function. In

particular, for the case under investigation, the stress

environment can elicit a physiological response from the

cells, representing the building blocks of the construct and

causing production of extracellular matrix (ECM).

To model these aspects, the kinetic condition is re-

written as:

D
@C

@n

����
i

¼ �ðaH Þ1=2
Ci ð4Þ

where a is a constant (having the reciprocal units of the

shear stress) and H is the fluid-dynamic shear stress at the

tissue/liquid interface.

Therefore, the growth rate is:

u ¼ �ðaH Þ1=2
Ci=Us

with C satisfying Eq. (4). This condition finally takes into

account the main aspects of growth behavior; that is, the

availability of nutrients (Ci), the slow surface kinetics (�),

and the intriguing effect of surface shear stress (H ).

Selection of the exponent (hereafter referred to as e) for

the shear stress in Eq. (4) was based on a parametric

investigation: Several simulations of the experiments by

Obradovic et al. (2000) have been carried out for different

values of the exponent, e = n and e = 1/n (n = 1,2,3,4, etc.).

This method has shown that e = 1/n, n = 2 (other values do

not reproduce the experiments). The parametric investiga-
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tion is not shown in detail for the sake of brevity. It is

worthwhile to emphasize how, according to Eq. (4), the

growth phenomena depend on both transfer of mass and

momentum to the tissue surface.

Governing Field Equations

In the presence of convection, the flow is governed by the

continuity, Navier–Stokes, and species equations, which,

in nondimensional, conservative form, read:

r � V ¼ 0 ð5Þ

@V

@t
¼ �r p�r � ½VV � þ Scr2V � Sc

1

D
V ð6Þ

@C

@t
¼ ½�r � ðVCÞ þ r2C� ð7Þ

where Sc = �/D is the Schmidt number (r is the kinematic

viscosity of the culture liquid). The nondimensional form of

the equations results from scaling the lengths by a reference

distance (L = 1 cm); the time by L2/D; velocity, V, and

pressure, p, by D/L and D2/L2, respectively; and the initial

value of the nutrient is C(o). Note that concentrations are not

posed in nondimensional form (grams per cubic centimeter).

Assumptions invoked in the development of equations for

this continuum model include: laminar flow, Newtonian

behavior of the phases (this implies that the constructs,

should be treated as highly viscous fluids), and constant

phase densities.

Moreover, the tissue is assumed to be nondeforming and

free of internal stress, whereas the multiphase region (region

where nutrients are absorbed and increase of mass occurs) is

viewed as a porous material characterized by an isotropic

permeability, D. The term�ScV/D in Eq. (6) is the Darcy term

added to the momentum equation to damp convection in the

solid phase. In the present analysis, permeability is assumed

to vary according to the Carman–Kozeny equation (Bennon

and Incropera, 1987; Lappa and Savino, 2002):

D ¼ ð1 � fþ qÞ3

ðfþ qÞ2

with q = 10�5. In practice, the effect of D is as follows: in full

liquid elements 1/D is very small and has no influence; in

elements that are changing phase the value of 1/D will

dominate over the transient, convective, and diffusive

components of the momentum equation, thereby forcing

them to imitate the Carman–Kozeny law; and in totally solid

elements the final large value of 1/D will swamp out all terms

in the governing equations and force any velocity predictions

effectively to zero.

Because the momentum and species equations are valid

throughout the entire domain, explicit consideration need

not be given to boundaries between solid, multiphase, and

liquid regions.

Phase-Field Equation

On the surface of the tissue:

ðj r j f 6¼ 0; 0 < f < 1Þ

and nutrient concentration must satisfy the kinetic condition

that, in nondimensional form, reads:

@C

@n

�����
i

¼ �̃ðãH̃Þ1=2ðCiÞ ð8Þ

where:

�̃ ¼ �L=D; H̃ ¼ @u

@y
þ @v

@x

� �

with u and v being the velocity components along x and

y, respectively.

In Eq. (8), the concentration gradient can be computed as:

@C

@n
¼ rC � n̂ ð9Þ

where n̂ is the unit vector perpendicular to the construct/

liquid interface pointing into the culture medium:

n̂ ¼ � rf

jrfj ¼ ða;hÞ ð10Þ

a ¼ � @f

@x
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@f

@x

� �2

þ @f

@y

� �2
s

;

h ¼ � @f

@y
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@f

@x

� �2

þ @f

@y

� �2
s ð11Þ

because:

@C

@n
¼ a

@C

@x
þ h

@C

@y

(hereafter subscript i is omitted), and Eq. (8) can be written as:

a
@C

@x
þ h

@C

@y
¼ �̃ðãH̃Þ1=2

C ð12Þ

where:

�̃ðãH̃Þ1=2
C

represents the mass exchange flux between solid and liquid

phase (i.e., tissue and feeding solution). The mass (tissue

matrix coming from incorporation and conversion of

nutrients) stored in computational cells that are undergoing

phase change can be computed according to:

@M

@t
¼ �L4

D
ðãH̃Þ1=2

C ds ð13Þ

where ds is the ‘‘reconstructed’’ portion of the tissue surface

(bydefinition,perpendicular to the interface normal vector, n̂)

‘‘bounded’’ by the frontier of the control volume (computa-

tional cell) located astride the tissue surface.
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To compute the nondimensional volume of the tissue mass

stored in a grid cell, the details of the specific tissue under

consideration must be introduced into the model.

Functional cartilaginous constructs for scientific research

and eventual tissue repair were cultivated by Freed et al.

(1997) in bioreactors starting from chondrocytes immobi-

lized on polymeric scaffolds and fed by glucose. The

scaffolds gradually degraded as the cells regenerated a

cartilaginous tissue matrix consisting of water (soft tissues

consist in fact primarily of various cell types, an extracellular

matrix, and abundant water), glycosaminoglycan (GAG),

and type II collagen (the main cartilage components).

Following Freed et al. (1997), the densities of these com-

ponents in the tissue (partial densities) were found to be

UGAG = 6 � 10�2 g cm�3 and Ucollagen = 2.7 � 10�2 g cm�3,

respectively.

The nondimensional volume of the tissue mass (GAG +

collagen) stored in a grid cell can be computed as:

dr
���
stored

¼ 1

L3

M

ðUGAG þ UcollagenÞ
ð14Þ

correspondingly:

f ¼ drjstored

dr
ð15Þ

where dv is the volume of the computational cell.

Therefore, the phase-field equation reads:

@f

@t
¼ 0; ifjrfj ¼ 0

@f

@t
¼ �̃ðãH̃Þ1=2ðCÞds

ðUGAG þ UcollagenÞdr
; if jrfj 6¼ 0; 0 < f < 1

ð16Þ
with C satisfying Eq. (12).

From mass balance, the solution for the normal velocity

at the interface is:

V � n̂¼ ðUC=USÞu* if jrfj 6¼ 0; 0 < f < 1 ð17aÞ

where US and UC are the total density of the solution and the

total density of the specimen, respectively, and the nondimen-

sional growth rate (e.g., Pusey et al., 1986) is computed as:

u� ¼ 1

US

� �
@C

@n
¼ �̃ðãH̃ Þ1=2

C=US ð17bÞ

with C (glucose concentration) satisfying Eq. (12).

Eqs. (12), (16), and (17) act as ‘‘moving boundary

conditions,’’ their solution being strictly associated with the

computational check on the value of f and its gradient. For

instance, in the case of Eqs. (16), the phase variable, f, is

updated (i.e., yf/yt p 0) only where and 0 < f < 1—that

is, close to the tissue/solution interface where tissue

enlargement occurs due to ‘‘internal cell division’’ and

‘‘production of extracellular matrix.’’ In contrast, f does

not change (i.e., yf/yt = 0) far from the surface. Note that,

typically, for organic tissue growth, the normal velocity at

the interface is very small with respect to the terminal

velocity, and for this reason it can be neglected.

Discretization

Eqs. (5)–(7) subjected to the initial and boundary conditions

are solved numerically in primitive variables by a control

volume method. The domain is discretized with a uniform

mesh and the flow-field variables defined over a staggered

grid. Forward differences in time and upwind schemes in

space (second-order accurate) are used todiscretize thepartial

differential equations, resulting in (n superscript indicates

time-step):

Vnþ1 ¼ Vn þ Dt½�r � ðVVÞ þ Scr2V�n

�Dt
Sc

D
Vnþ1 � Dtr pn ð18Þ

Cnþ1 ¼ Cn þ Dt½�r � ½VC� þ r2C�n ð19Þ

The orientation of the surface of the crystal is used to

determine the face fluxes for the computation of C at the

crystal surface [Eq. (12)]. The interface orientation depends

on the direction of the volume fraction gradient of the phase

within the cell, and that of the neighbor cell (or cells) sharing

the face in question.

The unit vector, n̂, results from the gradient of a smoothed

phase field, fw, where the transition from one phase to the

other takes place continuously over several cells (four or

five). The smoothed phase field is obtained by convolution of

the unsmoothed field, fw, with an interpolation function.

Depending on the interface’s orientation, concentration

gradients are discretized by forward or backward schemes.

For this reason, Eq. (12) in discretized form reads (note that

the i and j subscripts indicate the relative position along

x and y, respectively, of the ‘‘nodal’’ values of C):

a > 0; h > 0: Cnþ1
i; j ¼

½aCnþ1
iþ1; j=Dxþ hCnþ1

i; jþ1=Dy�
½�̃ðãH̃ Þ1=2 þ a=Dxþ h=Dy�

ð20aÞ

a < 0; h > 0: Cnþ1
i; j ¼

½�aCnþ1
i�1; j=Dxþ hCnþ1

i; jþ1=Dy�
½�̃ðãH̃ Þ1=2 � a=Dxþ h=Dy�

ð20bÞ

a > 0; h < 0: Cnþ1
i; j ¼

½aCnþ1
iþ1; j=Dx� hCnþ1

i; j�1=Dy�
½�̃ðãH̃ Þ1=2 þ a=Dx� h=Dy�

ð20cÞ

a < 0; h < 0: Cnþ1
i; j ¼

½�aCnþ1
i�1; j=Dx� hCnþ1

i; j�1=Dy�
½�̃ðãH̃ Þ1=2 � a=Dx� h=Dy�

ð20dÞ

Cnþ1
i; j
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is computed from Eq. (20), then the phase variable is

updated using Eq. (16):

fnþ1
i; j ¼ fn

i; j þ Dt
�̃ðãH̃Þ1=2ðCnþ1

i; j ÞDs
ðUGAG þ UcollagenÞDv

ð21Þ

According to Eqs. (20) and (21), if the nutrient concentration

is locally depleted and, correspondingly, the solid mass

stored in the computational cell grows and the phase variable

is increased. These phenomena are driven by the surface

kinetic condition and by the shear-stress distribution; that is,

the existing deposit grows if nutrient concentration is not

zero and the mass exchange is proportional to the local value

of the kinetic coefficient and of the fluid shear stress.

In Eq. (21), ys is the ‘‘reconstructed’’ portion of the solid

wall. The determination of ys requires a well-defined

‘‘interface-reconstruction’’ technique. (The shape of the

construct for a fixed time is not known a priori and must be

determined as part of the solution; for instance, refer to the

nonconnecting straight lines PLIC technique of Gueyffier

et al. [1999].)

The solution procedure is summarized in the flow-

scheme in what follows; it proceeds in four major stages:

1. Solution of the Navier–Stokes equations according to the

MAC method [Eq. (18)]: Vn+1 is computed as a function

of Vn.

2. Solution of the species equation [Eq. (19)]: Cn+1 is

computed as a function of the corresponding distribution

and of Vn.

3. Updating of the local values of C at the tissue/culture-

medium interface according to Eqs. (20). This stage

accounts for glucose depletion (due to incorporation into

the tissue) at time n + 1.

4. Adjournment of the phase-field variable distribution. The

phase-field variable is updated according to its distribu-

tion at the previous time-step (n) and on the basis of the

newly computed values of concentration, Cn+1, at the

construct interface [see Eq. (21)]. This final stage accounts

for the increase in size of the specimen at time n + 1.

The implementation of the SMAC method for the

solution of Eq. (18) is not described here for the sake of

brevity (see Lappa and Savino, 1999). Parallel super-

calculus is used due to the enormous time required for the

computations (although the model is two-dimensional). The

problem is split in two problems, one parabolic and the other

elliptic. A parallel algorithm, explicit in time, is utilized to

solve the parabolic equations (momentum and species

equations). A parallel multisplitting kernel is introduced for

the solution of the pseudo-pressure elliptic equation,

representing the most time-consuming part of the algorithm.

A grid-partition strategy is used in the parallel implementa-

tions of both the parabolic equations and the multisplitting

elliptic kernel. A message-passing interface (MPI) is coded

for interprocessor communications (for further details see,

e.g., Lappa [1997] and Lappa and Savino [1999]).

Numerical Simulations

The equations and the initial and boundary conditions are

solved numerically in cylindrical coordinates. The speci-

men (a disk-shaped cartilage construct having an initial size

of 5 mm � 2 mm) is supposed to be maintained, settling

at an approximately steady position within the vessel

(dynamic equilibrium of the operative forces gravity,

buoyancy and drag, while maintaining a state of continuous

freefall; see Experiments and Terminal Velocity subsec-

tion). According to experimental observations (Freed et al.,

1997; Obradovic et al., 2000), the fluid filling the rotating

vessel laps against the tissue, which has a position held

constant in time with the flat, circular area perpendicular to

the direction of motion. The specimen is supposed to

maintain axisymmetric shape during the growth process, its

symmetry axis being coincident with the symmetry axis of

the cylindrical scaffold initially used to seed the chon-

drocytes. The velocity field is supposed to be uniform and

parallel to the aforementioned axis at a sufficient distance

(about 1 cm) from the construct (undisturbed conditions).

Its intensity therein is assumed to be equal to the terminal

velocity computed as discussed in the Experiments and

Terminal Velocity subsection.

A 20-mm-high by 20-mm-wide (radius = 10 mm)

computational domain has been simulated. Figure 2 shows

the geometry of the computational domain and the boundary

conditions (note that, due to the axisymmetry of the model,

for the sake of simplicity and brevity, only half of the generic

meridian plane is shown in Fig. 2): y = 0 corresponds to the

symmetry axis, y = 1 to the distance from the axis at which

undisturbed flow conditions prevail, x = 0 corresponds to the

‘‘inflow’’ section (in the laboratory the construct holds a

fixed position and the fluid moves upward in the direction

Figure 2. Computational domain and boundary conditions (U is the

terminal velocity and u and v are the velocity components in axial and

radial direction respectively).

jw_bteen_67950_BB02-649; page 9 of 15
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Figure 3. Snapshots of growing tissue and surrounding velocity field: (a) t = 10 days; (b) t = 16 [days], (c) t = 22 days; (d) t = 28 days; (e) t = 34 days;

(f) t = 40 days. With regard the experiments by Obradovic et al. (2000), note that (a) and (f) corresponding to their initial condition (scaffold) and to

construct cultured for 6 weeks, respectively.
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opposite to the gravity force), and correspondingly x= 2 is the

‘‘outflow’’ section.

For y = 0, ‘‘mirror’’ boundary conditions are imposed; that

is, the radial velocity component (v) is zero and the axial one

(u) does not change across the axis (du/dy = 0); for y = 1,

undisturbed flow conditions are imposed, that is, v = 0 (the

undisturbed flow does not have a radial velocity component)

and u = U; for x = 0, undisturbed flow conditions are again

imposed; for x = 2 (outflow section), the axial velocity

component is equal to the terminal velocity as for the inflow

section (the volumetric rate of flow has to be constant

throughout the system because the liquid is an incompres-

sible fluid), but a nonzero radial velocity component may be

present due to the interaction of the moving fluid with the

obstruction created by the presence of the organic construct.

For this reason, the condition dv/dx = 0 is imposed therein

(this condition guarantees that the radial velocity at the

outflow section is free to change according to the behavior of

the wake produced beyond the specimen).

On the basis of a grid-refinement study (not shown for the

sake of brevity) a mesh with 200 points in the axial direction

and 100 points in radial direction is used. Growth is

obtained from a solution with initial concentration Cglucose(o)

= 4.5 � 10�3 g cm�3 (the diffusion coefficient is Dglucose =

6.7 � 10�6 cm2 s�1, the kinematic viscosity is r = 8 � 10�3

cm2 s�1). The frontier of the domain is supposed to be at

constant concentration during the growth process (i.e.,

Cglucose = Cglucose(o)).

In the experiments (see Obradovic et al., 2000) cells

proliferated over the first 5 to 7 days. Only after cell growth

ceased did the cells begin to separate themselves by

synthesizing matrix components (GAG + collagen). There-

fore, the investigators focused on the period between the first

10 days of growth and 6 weeks (42 days). The same period

(even if computationally very expensive) is simulated in the

present study.

Note that, clearly (the present mathematical model and

associated numerical method are original and are applied

herein for the first time) no data are available from the

literature regarding the value to assign to the kinetic coef-

ficient in Eq. (12).

This value has been determined in a unique manner:

Several simulations have been carried out for different values

of this parameter, then the effective E has been selected out

on the basis of the experimentally determined rate of growth

of the specimen size (the size of the construct increased at a

constant rate of 70 Am/day = 8.1 � 10�8 cm s�1 = 8.1 Å s�1;

see Obradovic et al., 2000). This method has led toE= 3 �10�6

cm s�1 and ã = 3 � 10�9. Validation of the aforementioned

procedure has been provided by the very good agreement of

numerical predictions obtained using these values with the

experimentally found morphological data. The two param-

eters, � and ã have been determined from the data of

Obradovic et al. (2000) pertaining to the rate of increase of

tissue size. It is worthwhile to point out how this rate is an

average shape-independent parameter. In contrast, the

criterion to conclude that the model is correct has been

based on the morphological (shape-change) evolution of the

tissue. The numerical results are able to reproduce the

morphological evolution observed by Obradovic et al.

(2000), even if they provided no data with regard to laws

and kinetics modeling the shape evolution.

The growth process is shown in Fig. 3. Each figure

part (a–e) corresponds to a different snapshot of the

growth process.

A toroidal vortex roll is created behind the growing

specimen. This behavior is due to the obstruction created in

the fluid flow by the presence of the disk-shaped tissue with

its circular area perpendicular to the direction of motion.

The toroidal convection roll appears in the generic meridian

plane in the form of two vortices located behind the body in

the downstream direction. The two vortices are embedded in

a low-velocity region hereafter referred to as the ‘‘wake.’’

Note that the interaction of the flow entering into the

computational domain from the lower boundary with the

axisymmetric body embedded in the inner space of the re-

actor leads to two main effects. One is the aforementioned

creation of a wake, the second is an effect of deceleration/

acceleration of the fluid. The flow is strongly curved

because it enters the computational domain directed along

x and is then forced to skirt around the construct. Due to this

path and its initial conditions, the fluid is initially dece-

lerated along x up to the stagnation conditions on the tissue

surface; it is then accelerated in the downstream direction

due to the cross-sectional area reduction associated with the

presence of the specimen. This structure is crucial in

determining the distribution of surface shear stress and thus

the growth behavior.

The simulations show that corners and edges of the tissue

are more readily supplied with solute (glucose) than the

center of the sides (this leads to morphological instability and

to a macroscopic depression around the center of the faces;

see Fig. 3). This is due to the pattern of the nutrient

concentration field around the growing construct. As

previously discussed, absorption of the solute into the tissue

causes a local depletion in concentration and a solutal

Figure 4. Glucose concentration distribution (t = 40 days).
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concentration gradient to form between the bulk solution and

the growth interface. The ‘‘steepness’’ of the gradient

determines the rate of solute transport to the growth interface,

the steepness being maximal around the corners (see Fig. 4).

Superimposed on this is the fact that a protuberance on the

interface encounters a higher shear stress and, according to

Eqs. (12) and (16), grows faster than a depression, which

encounters a lower shear stress.

This behavior is evident in Figure 6a, which shows the

growth habit simulation and progression of cartilaginous

matrix deposition. Note that the onset of morphological

instabilities and the existence of ‘‘depressions’’ around the

center of the faces of growing tissues (shown by the present

numerical results) is in very good agreement with the

experimental results of Freed et al. (1997) and Obradovic

et al. (2000) (see Fig. 6b). Figure 6, in particular, allows for

a comparison of the numerical and experimental results

(Obradovic et al., 2000) by highlighting some characteristic

points along the border of the construct (consider the

correspondence between the points A–F in Fig. 6a and b).

It is worthwhile to point out that the ‘‘depth’’ of the face

depressions is proportional to the size of the specimen; that is,

it increases during growth (Fig. 6a).

As time passes and the tissue widens, disturbance in the

flow field produced by the presence of the construct becomes

larger. This behavior in turn increases the value of the shear

stresses responsible for the growth of protuberances on the

surface (see Fig. 5).

A detailed description of these phenomena requires

a separation of the analysis for the different faces of

the construct.

The ‘‘face’’ (average) growth rate exhibits a different

value according to orientation of the face with respect to the

main direction of the flow; an important parameter is the

relative direction of the different faces, which induces

varying conditions for each face.

Figure 7 shows in detail how the convection effect results

in higher local shear stresses near the surface where the flow

is incoming (lower face) and in lower shear stresses near the

surface where the flow is outgoing (upper face). This

behavior can be explained based on the fact that the upper

side faces a region where recirculating flow occurs, and

therefore the fluid is in close-to-stagnation conditions. For

this reason the shear stresses causing growth there are

weakened and, correspondingly, the growth rate is reduced.

For the same reasons, the onset of morphological instabilities

is prevented for the upper side (the tissue surface facing the

wake is almost planar and without irregularities).

Moreover, it is noteworthy that, as time passes, the toroidal

vortex close to the upper side becomes larger. The expansion

of the wake is strictly related to the behavior of the tissue that

puffs out due to growth.

At the same time, and for the same reason (increasing size

of the sample), the shear stresses (and associated growth

rates) at the corners of the lower surface increase. This is due

to the acceleration of the flow around the corners induced by

the progressive reduction of the available cross-sectional

area in a direction perpendicular to the flow and provides a

Figure 5. Maximum shear stress versus t.

Figure 6. (a) Tissue growth habit simulation and progression of cartilaginous matrix deposition: snapshots of the tissue shape versus time (Dt = 5.2 � 104

seconds, (b) experimental histological cross-section of cartilage construct cultured for 6 weeks (Obradovic et al., 2000). (Reproduced with permission of the

American Institute of Chemical Engineers. Copyright B 2000 AIChE. All rights reserved.)
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theoretical explanation for the trend shown in Figure 5. It is

noteworthy how expansion of the lower edges in the radial

direction (see Fig. 3e–f) is also responsible for the presence

of an additional secondary small vortex ring circumferen-

tially wrapped around the construct.

In Figure 7, the experimental histological cross-section of

cartilage construct cultured for 6 weeks (Obradovic et al.,

2000) is superimposed on the independently computed tissue

shape and on the velocity and shear-stress distributions at the

same time. This artifice is used to highlight how the

numerical and experimental results are in very good

agreement and how edges and protuberances correspond to

the regions of high shear stress. The superposition provides

an excellent validation of the present shear-stress-based

kinetic model and associated moving boundary (CFD)

computational method. Note that the left side of the

experimental image has been replaced by the mirror image

of the right side. This artifice has been used because the

numerical computations are axisymmetric. For this reason

they cannot reproduce the weak asymmetry that may

characterize the specimen from an experimental point of

view. The prediction of weak asymmetries arising in the

final shape of the tissue due to environmental factors, such as

3D instabilities of the flow field in the wake behind the

specimen, Coriolis forces, terminal velocity nonparallel to

the symmetry axis, small asymmetries in initial shape of the

scaffold, curvature of flow due to rotation of the vessel, etc.,

is not possible on the basis of the present model. Three-

dimensional computations would be necessary. In that case,

however, massively parallel supercalculus would be neces-

sary instead of normal parallel supecalculus. This area of

study is the subject of forthcoming analyses.

DISCUSSION

In the translation of mechanical culture conditions into tissue

effects, several lines of evidence seem to support a role for

shear stress. The present analysis gives a definitive answer to

this question providing heretofore unseen theoretical back-

ground supported by numerical simulations. In light of the

arguments pointed out in the Numerical Simulations

subsection, the fluid shear distribution turns out to be crucial

for the surface absorption kinetics and for the overall tissue-

growth process. It acts by modifying the ‘‘internal cell

division’’ and ‘‘addition of extracellular matrix’’ mecha-

nisms responsible for tissue enlargement and leads to

different growth rates for the different sides of the specimen

and to the onset of morphological instability (i.e., depres-

sions and/or protuberances of the tissue/culture-medium

interface). Moreover, according to the present analysis, the

shear-stress distribution is not constant in time but changes

due to the increased size of the organic construct. The

interplay between the increasing size of the tissue and the

structure of the convective field is essential in determining

the time evolution of its shape.

It has been shown that the size of the growing specimen

plays a ‘‘critical role’’ in determining the intensity of

convection and of the shear stresses. Convective effects, in

turn, are found to impact growth rates, particle size, and

morphology, as well as the mechanisms driving growth.

The present analysis completely supports, by quantitative

modeling and computations, Freed’s supposition (Freed

et al., 1997) about the effect of fluid shear stress in her

experiments: On Mir, the constructs were exposed to

uniform shear and mass transfer at all surfaces such that

the tissue grew equally in all directions, whereas, on Earth,

the particular fluid-dynamic environment increases shear

and mass transfer circumferentially such that the tissue tends

to grow preferentially in the radial direction (around the

lower corners).

For the first time, the experiments of Freed et al. (1997)

proved the effect of the fluid-dynamic environment on

growth and morphological evolution of tissue through direct

comparison of experiments carried out in the true weight-

lessness of space and on the ground. On the basis of the lines

of evidence supported by cross-check of these experiments

and by the present computations, some highly relevant

conclusions can be drawn. On the ground, the rotating vessel

does not actually cancel the effects of gravity, because the

endless freefall of the specimen through the liquid leads to a

convective pattern that, due to shear-stress-dependent sur-

face kinetics, influences the final shape of the biologi-

cal construct.

CONCLUSIONS

A mathematical model has been carefully developed for the

case of growth of organic tissues that are extremely complex

physical–chemical systems and whose properties may vary

as a function of many environmental influences. The case of

Figure 7. Velocity field and nondimensional shear-stress distribution

(� 10�8; t = 40 days). Experimental histological cross-section of cartilage

construct cultured for 6 weeks, obtained by Obradovic et al. (2000), is

superimposed on the independently computed tissue shape and on the

velocity and shear-stress distributions at the same time.
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the rotating bioreactor has been investigated because the

rotating-wall vessel largely solves the primary challenge of

suspension culture: to suspend cells and microcarriers while

providing adequate nutrition and oxygenation.

An original volume-of-fraction method specifically de-

signed for the case under investigation has been introduced

and applied to recent important experiments corresponding

to the growth of a cartilage construct. This method, which

eliminates the need for separate equations in each phase by

establishing conservation equations that are universally

valid, allows a fixed-grid solution to be undertaken and is

therefore able to utilize standard solution procedures for the

fluid flow and species equations directly, without resorting to

mathematical manipulations and transformations (this fea-

ture, on the other hand, facilitates a parallel implementation

of the code based on a grid-partition strategy).

In the OTGVOF method, the ‘‘phase-field’’ variable, f, is

computed using incorporation kinetics at the surface of the

biological tissue. These conditions are coupled to the

exchange mass flux at the interface and lead to the intro-

duction of a group of differential equations for the nutrient

concentration around the specimen and the evolution of

matrix mass displacement.

The model has been based on reasonable assumptions and

on parameters that were experimentally determined. In

particular, the ‘‘sensitivity’’ of the surface (i.e., growth rate)

of the organic tissue to shear stress has been taken into

account. The ‘‘physical forces’’ due to fluid motion induce

changes in cell metabolism and function. The stress

environment elicits a physiological response from the cells

that are the building blocks of the construct, causing them to

produce extracellular matrix (ECM). Accordingly, for the

numerical simulations, the growth velocity and/or the

‘‘growth law’’ were not been directly imposed but resulted

from conditions related to solute transport and shear-stress

distribution (i.e., mass and momentum transfer).

It is generally accepted that the growth of organic tissue

depends in part on biochemical factors. However, the

precise relationships that govern growth in general are not

known. The results presented herein fit with the processes

that control tissue development. The consistency of model

predictions with experimental data suggests that rate-

controlling steps have been taken into account, and that

simplifications do not distort actual behavior. The method

has proven to be able to predict morphology instabilities

(i.e., habit/shape change) of the tissue. An analysis of the

distribution of the local growth rate along the sides of the

specimen has been carried out. The growth rate was found to

be nonuniform across the faces (growth rate is always lower

at the center than at the corner). This follows because the

‘‘steepness’’ of the concentration gradient and the local

fluid-dynamic shear stress determine the rate of incorpo-

ration and conversion of the nutrients into the tissue main

components (the steepness of the feeding concentration gra-

dient and the fluid stress being maximum around the corners).

The role of the changes in size of the sample in determining

the intensity of the convective field and its structure (the

increasing size of the constructs tends to strengthen the shear

stresses at the lower corners and to weaken them on the upper

surface) has been pointed out.

Determining the growth laws and models is central to

understanding how environmental conditions affect growth.

Moreover, this knowledge is essential for growing replace-

ment organic constructs in vitro through the techniques of

tissue engineering. The present investigation demonstrates

both the potential and challenges of mathematical modeling

of in vitro organic tissue growth.

The proposed models and methods exhibit heretofore

unseen capabilities to predict and elucidate experimental

observations and to identify cause-and-effect relationships;

that is, they give insight into the mechanisms driving the

phenomena under investigation. Of course, further inves-

tigation is needed to couple the present techniques with other,

existing ones by taking into account the effect of internal

fiber stress of the tissue and the complex 3D fluid-dynamics

occurring in the rotating vessel system.

The author thanks the reviewers for their very constructive

comments and Dr. Gordana Vunjak-Novakovic for making available

some important experimental data.
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