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Computational Intelligent Gait-Phase Detection
System to Identify Pathological Gait
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Abstract—An intelligent gait-phase detection algorithm based
on kinematic and kinetic parameters is presented in this paper.
The gait parameters do not vary distinctly for each gait phase;
therefore, it is complex to differentiate gait phases with respect to
a threshold value. To overcome this intricacy, the concept of fuzzy
logic was applied to detect gait phases with respect to fuzzy mem-
bership values. A real-time data-acquisition system was developed
consisting of four force-sensitive resistors and two inertial sensors
to obtain foot-pressure patterns and knee flexion/extension angle,
respectively. The detected gait phases could be further analyzed
to identify abnormality occurrences, and hence, is applicable to
determine accurate timing for feedback. The large amount of data
required for quality gait analysis necessitates the utilization of in-
formation technology to store, manage, and extract required infor-
mation. Therefore, a software application was developed for real-
time acquisition of sensor data, data processing, database man-
agement, and a user-friendly graphical-user interface as a tool to
simplify the task of clinicians. The experiments carried out to val-
idate the proposed system are presented along with the results
analysis for normal and pathological walking patterns.

Index Terms—Fuzzy inference system (FIS), gait-phase detec-
tion, hardware and software codesign, virtual instrumentation.

1. INTRODUCTION

AIT analysis is the study and investigation of human loco-

motion, which is carried out by visual observation, sen-
sor technology, video/optical cameras, or integration of these
methods.

With the development of microtechnology, microsensors
such as accelerometers, gyroscopes, magnetometers, load cells,
foot switches, electromyography (EMG) sensors, etc., are read-
ily available in the industry that can be utilized for human-gait
analysis. It is a crucial factor to identify sensor types to obtain
reliable and accurate data based on the application. Therefore,
many research works have been carried out to investigate the fea-
sibility of these sensor types in physical rehabilitation [1]—[5].

Initial research studies on gait analysis revealed that a walk-
ing gait cycle can be divided into eight phases, namely initial
contact (IC), loading response (LR), mid-stance (MSt), terminal
stance (TSt), preswing (PSw), initial swing (ISw), mid-swing
(MSw), and terminal swing (TSw) [6]-[8]. Gait-phase detec-
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tion is mostly used to determine accurate timing of corrective
feedback in rehabilitation.

Gait phases of a healthy human are continuous and always
follow the aforementioned sequence. In the presence of abnor-
malities, the gait phases will present irregularities. Therefore,
differentiating gait phases is also known as an effective method
to detect gait anomalies.

Many simple algorithms are presented by researchers to dis-
tinguish between gait phases [9]-[11]. Smith et al. [11] pro-
posed a threshold-based gait-phase detection system that dif-
ferentiated gait phases based on foot-pressure patterns. The
results reported that 80% of the detection errors were due to
failure of the force-sensitive-resistor (FSR) signal not reaching
the threshold value. In recent years, more sophisticated com-
puter technology is integrated into the field of biomechanics
to design feasible gait-phase detection algorithms incorporating
artificial intelligence such as neural network, fuzzy logic, and
hybrid systems [12]-[15]. The detection errors reported in [12]
was addressed in [16] and [17], where Kong et al. used fuzzy
logic to determine gait phases of walking based on foot-pressure
patterns. The authors report that the use of fuzzy logic helps ob-
tain full information on gait patterns even at the presence of low
sensor signals.

Although many algorithms are present, the accuracy and reli-
ability of these algorithms still remain questionable, and a stan-
dard accepted gait-phase detection algorithm is not yet present.
Therefore, this paper investigates the reliability and accuracy
of an intelligent gait-phase detection system using both foot-
pressure and joint-angle measurements incorporated with ma-
chine intelligence (fuzzy logic). The gait-phase detection algo-
rithm was developed using the concept proposed by Kong and
Tomizuka [16]. However, this system only used foot-pressure
information that was sufficient only to detect subphases of the
stance phase. Therefore, in this paper, in addition to FSRs, two
inertial sensors are proposed in order to detect subdivisions of
both swing and stance phase.

The main objective of the proposed system is to obtain accu-
rate measurements for efficient detection of gait phases during
walking gait. In contrast to existing systems, this paper presents
an overall hardware and software codesign of a wearable smart
device for gait-phase detection with the competence to be used
in a clinical environment.

II. DESIGN AND IMPLEMENTATION OF THE SYSTEM
A. Hardware and Software Codesign

The overall system can be presented as an integration of soft-
ware and hardware implementation (see Fig. 1). The hardware
consists of four FSRs, two inertial measurement units (IMUs),

1089-7771/$26.00 © 2010 IEEE
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Fig. 1. Overall system architecture.

and data-acquisition (DAQ) devices to obtain foot-pressure pat-
terns and Euler angles of the knee joint during walking. Four
FSRs from Interlink Electronics were placed in a shoe insole of
size 8 (average shoe size of test subjects) to avoid damage to sen-
sors and ensure comfort of the wearers. FSRs are polymer-film
devices, which exhibit a decrease in resistance with an increase
in the force applied to the active surface [18]. The FSRs used
consist of circular sensing area with 0.5 in diameter and a neg-
ligible thickness of 0.018 in.

Inertia Link offered by Microstrain, Inc., is an IMU that com-
bines a triaxial accelerometer, triaxial gyro, temperature sensors,
and an on-board processor. This wireless sensor comes with a
2.4-GHz universal-serial-bus (USB) base station that allows ef-
ficient data transfer from the sensor to host PC. This sensor was
utilized for the sole purpose of obtaining accurate measurements
of the knee-joint angle of the human walking gait.

The FSR signals were transmitted to the host PC by means of a
USB DAQ device (NI-USB-6009) by National Instruments (NI).
The four FSR sensor signals were tied to the analog inputs of
the DAQ device for continuous DAQ. Furthermore, a conditional
circuit was built to convert the applied force to readable voltage
values. The overall wearable system is portable due to its small
size and light weight. The system can be used with minimal
setup time due to its plug-and-play capabilities.

The primary software used was LabVIEW by NI. The built-
in libraries of LabVIEW were used to acquire sensor data via
the DAQ devices, and to perform signal processing and filtering
to obtain foot-pressure patterns and knee angle. These two gait
parameters were used as inputs to the fuzzy inference system
(FIS) to detect gait phases of walking in real time. A user-
friendly graphical-user interface (GUI) was also implemented
in LabVIEW for users to interact with the hardware setup, and
graphically represent the gait parameters and gait phases de-
tected. The sensor data are also saved in files for later reference
and are linked to a database that manages the patients personal
and trial records. The FIS was initially designed using the fuzzy

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 14, NO. 5, SEPTEMBER 2010

\ S
Hallux T B
Meta ‘

. Metas y '

{
‘/"‘ |" ‘
( :
‘\97i Heel -

LR MSt TSt

(@) (b)

P Sw

Fig. 2. (a) FSR sensor placements at the heel, Meta5, Metal, and hallux.
(b) Foot-pressure patterns with shaded areas representing pressure occurrences
for each subphase of stance phase.

logic toolbox available by MATLAB. The developed FIS was
imported to LabVIEW to enable real-time capabilities.

In contrast to most systems, the software application itself per-
forms signal processing/filtering that reduces the overall hard-
ware to be tied to the wearer.

B. Differentiation of Gait Phases Based on Gait Parameters

The foot-pressure patterns and the knee angle for each gait
phase during walking were obtained with reference to norma-
tive data presented in [6]—[8]. The maximum pressure occurs
at the heel, first metatarsal head (Metal), fifth metatarsal head
(Meta5), and the hallux, which are identified as the joints with
maximum force occurrence during walking [16]. With refer-
ence to Fig. 2(b), the darkened area represents the joints where
pressure occurs for each subphase of the stance phase. There-
fore, it was concluded that four FSRs placed at the aforemen-
tioned joints were sufficient to detect subphases of stance phase,
namely LR, MSt, TSt and PSw.

The FSRs placed at heel, MetaS, Metal, and hallux will be
referred to as FSR1, FSR2, FSR3, and FSR4, respectively, for
the rest of the content of this paper [see Fig. 2(a)].

Fig. 3(b) illustrates the knee angle during normal-walking
gait [6]. The knee passes through four arcs during one gait, and
knee flexes and extends in alternately. The third and the fourth
arcs represent the knee-angle pattern during the swing phase.
The latter two arcs are considered in this paper to differentiate
gait phases during the swing phase, namely the ISw, MSw, and
TSw of a gait cycle. The range of knee angle for each phase can
be used to differentiate between phases which are represented
within vertical lines shown in Fig. 3(b). The knee angle was
chosen to develop the FIS as the knee mobility and stability are
major factors in the normal-walking pattern and it is the junction
of the femur and tibia that constitute to the major segments of
the lower limb [6].

To obtain accurate measurements of the knee angle during
walking gait, two IMUs were placed at the thigh and the shank
with the Y-axis pointing into the page. The sensors A and B
in Fig. 3(a) should be placed such that it gives a negative and
positive value, respectively, when rotated clockwise. The Euler
angles obtained from these two sensors were summed to obtain
the knee angle represented in Fig. 3(b) “6,” which is the angle
of rotation of the shank with respect to the thigh.
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Fig. 3. (a) IMU sensor A and sensor B placed at the thigh and the shank,
respectively. (b) Knee angle 6 obtained for normal-walking gait.

C. DAQ and Processing

The Inertia Link firmware was designed such that the veloc-
ity, acceleration, and Euler angles are transmitted to the USB
base station as wireless packets, upon a user command. For
the implementation of this system, the user command notifies
the sensors to transmit only Euler angles at a sampling rate of
100 Hz [1], [12], [13]. The wireless packet contains 19 B com-
prising of a header, Euler angles about x-, y-, and z-axes, and
a checksum. The software application developed in LabVIEW
was programmed to validate the packets received at the host
PC, by comparing the transmitted checksum with the received
checksum [19].

The FSR signals transmitted voltage values with respect to
the force applied on the sensor surface. The literature provided
by the manufacturer reported that the part-to-part force repeata-
bility of the FSRs vary from 15% to 25% that could significantly
reduce the precision of the measurements. Therefore, to avoid
significant inaccuracies of the system, the voltage measurements
of individual FSRs placed at the heel, Meta5 and Metal, and
the hallux were obtained for three subjects. The voltage mea-
surements of individual FSR sensors were obtained when the
subjects’ complete body weight was applied and no weight was
applied. These results were used to determine the cutoff values
for gait-phase detection, and are further elaborated in the next
section.

The FSR sensor signal outputs were sampled at 100 Hz to
synchronize the sensor data with the IMUs.

The IMU sensor signals were filtered to remove random noise
of the sensor outputs. The moving-average filtering technique
was used to obtain a smooth curve of the knee angle to calculate
the accurate gradient using the previous five data points. This
filtering technique was specifically used due to its simplicity
which reduces calculation time, which is essential in real-time
applications.

D. FIS for Gait-Phase Detection

Fuzzy controller is a rule-based system in which the condition
and the operation are based on fuzzy logic. The conditions and
operations are represented as fuzzy sets that define the degree to
which a condition is satisfied (membership value (MV)), without
drawing a sharp boundary between members and nonmembers
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of a class. In recent years, researchers have proposed systems
based on fuzzy logic and reported key advantages in comparison
to other methods as follows.

1) Ng and Chizek [14] reported that gait-event classification
based on artificial neural network was significantly poor
in comparison to fuzzy-logic-based gait-event detection.

2) Fuzzy logic helps to obtain full information on gait pat-
terns even at the presence of lower sensor signals [16].

3) Fuzzy logic allows smooth transitions even in the presence
of rapid changes [16].

4) Tt has shown to accommodate relatively large step-to-step
variability observed in electrically stimulated gait [13].

Furthermore, fuzzy logic is a knowledge-based algorithm that
provides a platform to develop a system with an element of
explanatory capability on expert rules, and present the data in a
manner similar to human thought.

Due to the aforementioned advantages, this paper presents
the application of fuzzy logic to determine gait phases with
increased simplicity.

The designed FIS consists of only five inputs; the four FSR
signals and the knee angle, predefined set of rules and the output,
and gait phases. The FIS was implemented such that each gait
phase will have an MV of “1” to indicate that the gait phase
was completely detected, and an MV of “0” to indicate the gait
phase is not detected. If a gait phase has an MV between 0 and
1, it indicates that the gait phase was only partially detected to
a degree of the MV.

The gait parameters for each gait phase discussed in
Section II-B were used to divide the FSR signals and the knee
angle into two categories, namely “high” and “low.” “High”
and “low” are defined as a function, known as a membership
functions (MFs) in fuzzy logic. The MF “high” was defined as a
sigmoid function that was used due to its characteristic of being
smooth and continuous within a specific range (see Fig. 4). The
FSR signals were obtained when the complete body weight was
applied and no weight was applied, for several subjects, and the
values were averaged to obtain two cutoff values to define the
MFs. For example, if the average FSR signal obtained when
weight was completely applied and no weight was applied was
4 and 0.8 V, respectively, the sigmoid function was implemented
in MATLAB, as represented in Fig. 4. Note, although the FSR
signal should be 0 V when no pressure is applied, due to contin-
uous contact of the FSRs and foot, a slight pressure was attained.
Similarly, all the FSR inputs were defined as a sigmoid function
in MATLAB.

The knee-joint angle was also defined using sigmoid func-
tion and the cutoff values were used as 30—40° to illustrate the
transition from “low” angle to “high” angle.

The sigmoid function “high” and “low” can be represented as
in (1) and (2), in which the values of “a” and “c” were obtained
from the plot of MATLAB, similar to Fig. 4, for each input
parameter. fyig1, refers to the MV of an FSR signal that belongs
to the “high” MF and vice versa

1
ingh(I) = m (H

fLow (1') =1~ ingh(x)~ (2)



1176

4
x=measured voltage for FSR

Fig. 4. Example of the fuzzy MF “high” for FSR signals.
TABLE I
PREDEFINED SET OF FUZZY RULES
FSR 1 FSR2 FSR3 FSR 4 Knee angle  Gait Phase

1 High Low Low Low - LR

2 High High High Low - MSt
3 Low High High High - TSt
4 Low Low Low High - PSw
5 Low Low Low Low High ISw
6 Low Low Low Low High MSw
7 Low Low Low Low Low TSw

The input MFs were mapped to the output with a minimum
number of predefined rules represented in Table I, which were
defined based on the foot-pressure patterns and knee-joint angles
for each gait phase illustrated in Figs. 2 and 3.

Rule 1 can be further elaborated as “if FSR1 is High AND
FSR2 is Low AND FSR3 is Low AND FSR4 is Low, THEN
LR.” For rule 1 to be satisfied and LR to be detected, all con-
ditions should be satisfied. Here “AND” refers to the maxi-
mum MV for each condition. Therefore, for LR to have an
MYV of “1,” FSR1, should completely belong to MF “high” and
the rest of the FSR signals should completely belong to MF
“low.” In other words, referring to (1) and (2) fuign(FSR1),
Jrow (FSR2), fLow(FSR2), and fiow (FSR2) should have an
MV of “1.”

These rules were also implemented such that for normal gait,
all gait phases will be detected in the sequence starting from LR
and ending at TSw.

However, referring to rule 5 and rule 6, it is clear that for the
condition where all FSRs are low and the Knee angle is high,
two gait phases, namely ISw and MSw will be detected. This
is due to the similar knee-angle values during these two phases.
However, it is clear from Fig. 3(b) that the knee angle tends to
increase (positive gradient) during ISw, while the knee angle
decreases (negative gradient) during MSw. Taking this factor
into consideration a new crisp value was introduced into the FIS
to distinguish between ISw and MSw. The final FIS consists of
five fuzzy inputs and one crisp input.

At certain rules (i.e., rule 4), not all sensor signals were con-
sidered to define a gait phase due to the variability of gait pa-
rameters for each individual. The clarity of the rules and MF
values for the FIS was further tested with data obtained from
three subjects performing normal gait. The FIS was refined with
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these values to optimize and finalize the gait-phase detection
algorithm.

E. Analysis of Gait Phases to Identify Abnormal Gait

The FIS system was implemented such that for normal gait,
one gait cycle consists of all gait phases that are detected in the
sequence starting from LR and ending at TSw. Furthermore, the
FIS was governed by the following criteria for normal gait.

1) Only one gait phase will be detected completely at any
given time. This means that only one gait phase will have
an MV of “1” at a given instance.

2) For normal gait, the MV of gait phase will be between 0
and 1 only during a transition period from one phase to
another.

If the gait phases detected does not comply with the expected

sequence and the above criteria, it is safe to report the walking
gait as abnormal.

F. Interactive GUI

A main concern in gait analysis is the complexity of dealing
with hardware and software and accurate interpretation of gait
parameters obtained. Therefore, based on the survey carried out
by Lee et al. [20] to obtain information on the requirements
of gait analysis from a clinician’s point of view, GUI was de-
signed to facilitate simplicity to the gait-analysis system. The
GUI contains four tabs that allows user to view or add sub-
ject information, sensor setup and acquire sensor data, view gait
phases detected in a graphical format, and generate a final report
based on the gait parameters and gait phases detected.

An important feature in the GUI is the sensor-setup process.
This allows the clinicians to perform zero referencing of the
IMUs and to test the workability of the sensors before acqui-
sition. The IMU values were displayed on gauges that were
identified as a practical representation for zero referencing (see
Fig. 5). Upon activating the calibrate button the Euler angles
about Y-axis will be automatically set to zero.

The GUI is also linked to the database which maintains
records of the patients. The user interface facilitates the ac-
cess to the database without requiring in-depth knowledge on
server-side implementation. The overall GUI facilitates the gait-
analysis process with minimal functions.
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A. Experimental Setup

To verify the system developed, three female and three male
healthy subjects between ages 22 and 25 years were volunteered.
The subjects were asked to wear the shoe insole and the IMUs,
as described in Section II-B, to obtain the foot-pressure patterns
and the knee-joint angle.

After confirming the comfort of the subjects, they were asked
to perform normal-walking gait, and two abnormal gaits at level
ground with comfortable speed. The normal-walking trial was
recorded for approximately 60 s, and the sensor data were col-
lected to validate the overall system.

The abnormal gait was namely; toe drag and toe walking
which are the most common types of knee dysfunctions. Toe
drag occurs due to inadequate muscle stimulation to facilitate
knee flexion. Low knee flexion during swing phase results the
toe to drag on the ground. Toe walking is commonly caused by
muscle spasticity that results patients to walk on their toe [6].
During the IC, the forefoot contact occurs without the heel
contact.

B. Analysis of Results

The acquired sensor data for a normal-walking gait with five
steps are illustrated in Fig. 6 as a function of time in seconds.

The FSR signals and the knee angle closely comply with the
expected patterns. However, the first and last gait cycles may be
ignored due to occurrence of acceleration and deceleration at the
start and end of the gait performance. The gait phases detected
for normal gait (see Fig. 7) were in the sequence of LR, MSt,
TSt, PSw, ISw, MSw, and TSw that reported a maximum MV
of “1” during each gait cycle.

In contrast, all subjects performing toe drag exhibited some of
the FSR signals to be detected throughout the gait cycle and the
maximum knee flexion reached was significantly less compared
to normal gait (see Fig. 8).
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(a) Foot-pressure patterns and (b) knee-joint angles obtained for toe

Due to some FSR signals being present during swing phase,
the rules with condition “if FSRx is low” were not fully satisfied.
For PSw phase to be detected the FSR at the metatarsal head
s are required to be low. For toe drag, these two signals were
always “high”; hence, the graphical representation (see Fig. 9)
shows the partial detection (MV less than “1”) of the phase.

The ISw and the MSw have the condition “if Knee_angle
is high” in which the “high” fuzzy set lie within 40-65°. This
condition was not satisfied for toe-drag gait, as the maximum
knee angle detected was less than 30° for all subjects. Therefore,
the ISw and MSw were not detected for toe-drag gait. Further-
more, TSw was detected twice violating the sequence of the gait
phases. This resulted due to the low knee flexion during most
of the gait cycle, in turn, satisfying the condition “Knee_angle
is low,” in turn, detecting TSw more than once during each gait
cycle.

Toe walking causes a walking gait cycle to not have heel
contact during the stance phase. As a result, the FSR placed at
the heel will always have a value close to zero (see Fig. 10(a)).
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No heel contact also restricts the knee from reaching
maximum extension. Most subjects performing toe walk-
ing illustrated a maximum extension within 9-25° (see Fig.
10(b)). Therefore, rules with the condition “FSRI is high”
and “Knee is small” were not completely satisfied, causing
LR, MSt, and TSw to only be detected partially or not de-
tected at all (see Fig. 11). The PSw phase was also de-
tected in an irregular manner throughout toe-walking gait be-
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cause the “FSR4 is high” condition was true throughout stance
phase.

In contrast to existing systems, the proposed algorithm could
also aid in identifying the instances of the deformity occur-
rence. For instance, for toe-drag gait, it is safe to conclude that
the deformity did not occur during the MSt and TSt phases be-
cause they were completely detected in the expected sequence.
Therefore, the problem occurrence can be narrowed down to
the remaining gait phases that were partially or completely
undetected.

In contrast to a threshold method, the output of the gait phases
detected are smooth and does not rapidly change from “1” to
“0” or vice versa. This could provide a safe platform for using
the proposed system to control feedback devices.

The FIS detected all gait phases in the expected sequence
during normal gait. Therefore, the detection reliability of the
system for a total of 270 steps (45 steps X 6 subjects) was
100%. In [6], the gait phases LR, MSt, TSt, PSw, ISw, MSw,
and TSw are represented as 10%, 20%, 20%, 10%, 13%, 14%,
and 13% of the gait cycle, respectively. These percentages were
used to calculate the expected time durations (reference time du-
rations) each gait phase should be detected for each gait cycle.
Based on these data, the error difference between the normative
data and the gait phases detected during each system was cal-
culated. The calculation of error for LR phase is represented as
follows:

Error (in milliseconds)

GClime X %LR)
100

) — LRfoijStimc (3)

where GC, where GCii,. = gaitcycletime, and %LR is the
accepted percentage of LR phase within one gait cycle.

Hence, the average error and standard deviations reported for
LR, MSt, TSt, PSw, ISw, MSw, and TSw are 11 &+ 92, 57 &+
113, —67 £ 58, 66 += 44,5 £ 26, —12 £ 25, and 64 £ 29 ms,
respectively. The error was reported as positive when the FIS
detected a gait phase for a less time period that the standard
accepted time and vice versa.

The duration of the gait phases obtained from the FIS was
calculated as a percent of the gait cycle to further quantify the
accuracy of the FIS. The difference between the percentage of
gait phase obtained from the FIS and the normative data were
calculated to obtain the error as a percentage difference. The
average error as a percentage difference obtained for 45 steps
for all subjects are tabulated in Table II.

IV. DISCUSSION AND CONCLUSION

As an overall analysis of the system, most of the errors as well
as the variations occurred during the stance phase, indicating in-
accuracies due to foot-pressure measurements. The errors may
have been caused by different shoe sizes of the subjects partici-
pated. Although the shoe insole used was of size 8, the subjects
volunteered in this study were of shoe sizes 6—11. Therefore, the
placements of the sensors may not have been placed accurately
under the heel, metatarsal heads, and toe as expected. For ex-
ample, referring to LR phase, subjects with smaller shoe sizes
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TABLE II
DIFFERENCE BETWEEN THE GAIT PHASES OBTAINED FROM THE FIS AND THE
NORMATIVE DATA, AS AN AVERAGE FOR 45 STEPS FOR EACH SUBJECT (THE
ERRORS ARE REPORTED AS A PERCENTAGE DIFFERENCE)

Subject LR MSt TSt PSw ISw  MSw TSw
) B ) O ) %)
A 9 14 -5 6 2 -1 6
B 4 9 0 7 3 -1 3
c 0 3 -7 5 0 2 6
D -12 13 -4 7 2 2 7
E 6 -3 -12 8 -1 0 8
F 6 10 -5 0 1 1 2

(subject A with shoe size 7, and subject D with shoe size 6)
resulted in errors with negative percentages, indicating that the
phase was detected longer compared to normative data, while
subjects with bigger shoe sizes (subjects B, E, and F) resulted
in errors with positive percentages, indicating the phase was de-
tected for a shorter duration compared to normative data. This
is because the rule specifies that the LR phase is detected only
when FSRI1 is “high” and the rest are “low”. As soon as FSR2
and FSR3 reach the cutoff values, MSt phase reports an MV of
greater than “0.” For subjects with smaller shoe sizes, the time
taken for FSR2 and FSR3 to reach the cutoff values is more,
hence resulting in longer periods of LR phase in comparison to
those with larger shoe sizes. The rest of the inaccuracy occur-
rence can also be explained in the similar manner. The subject C,
with shoe size 8%, which is the closest to the instrumented shoe
insole reported gait-phase percentages closest to the normative
data. The minimum error differences varying between —7% and
6% during the stance phase was reported for this subject (root-
mean square = 62 ms for 45 steps). This further clarifies that
most errors were due to different shoe sizes of the test subjects.
Therefore, errors could be significantly reduced by developing
shoe insoles to match the exact size of the participant.

A comparative study was carried out based on key research ad-
dressed in the literature for gait-phase detection. The maximum
error reported for the proposed system was less in comparison to
the algorithms proposed by Skelly and Chizek [13] and Pappas
et al. [1]. Smith ef al. [11] reported a maximum error of 12 ms
less than the proposed system. However, an average variability
of more than 80 ms was reported for all gait phases that was
much higher than the proposed system.

More sophisticated techniques such as supervised machine-
learning techniques [12] and hybrid intelligent systems [15]
could further improve the accuracy of the gait-phase detection
algorithm. However, the complexity of such systems may cause
the overall system to increase computational time, which is a
major drawback in real-time applications.

The results show that the developed system was able to iden-
tify abnormalities based on the gait phases detected and aid in
identifying the point of abnormality occurrence. Hence, peo-
ple with normal gait could benefit from the system, to detect
the presence of slowly occurring abnormalities, while people
with pathological gait could benefit from the system in terms of
identifying accurate timing for corrective feedback.
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