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A Real-Time and Self-Calibrating Algorithm Based
on Triaxial Accelerometer Signals for the Detection

of Human Posture and Activity
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Abstract—Assessment of human activity and posture with triax-
ial accelerometers provides insightful information about the func-
tional ability: classification of human activities in rehabilitation
and elderly surveillance contexts has been already proposed in the
literature. In the meanwhile, recent technological advances allow
developing miniaturized wearable devices, integrated within gar-
ments, which may extend this assessment to novel tasks, such as
real-time remote surveillance of workers and emergency operators
intervening in harsh environments. We present an algorithm for
human posture and activity-level detection, based on the real-time
processing of the signals produced by one wearable triaxial ac-
celerometer. The algorithm is independent of the sensor orientation
with respect to the body. Furthermore, it associates to its outputs a
“reliability” value, representing the classification quality, in order
to launch reliable alarms only when effective dangerous conditions
are detected. The system was tested on a customized device to esti-
mate the computational resources needed for real-time functioning.
Results exhibit an overall 96.2% accuracy when classifying both
static and dynamic activities.

Index Terms—Activity and posture monitoring, real-time move-
ment classification, triaxial accelerometer, wearable device.

I. INTRODUCTION

T ECHNICAL progress in microelectronics offers new low-
cost, low-weight, and miniaturized devices for wearable

instrumentation [1]. Recent advances in technology allow inte-
grating sensors, electronics and wireless transmission modules,
into single units to be worn by people during everyday life.
These systems monitor parameters related to working activity,
health state, or even environmental conditions surrounding the
wearer. Therefore, they provide a large amount of biometric
and environment-related signals; in this scenario, one challenge
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considers developing algorithms that synthesize the available
data and extract reliable information from them. Implement-
ing smart algorithms on “local” microprocessors, which are
directly connected to the sensors, allows transmitting a “re-
duced” amount of information, with large benefits of efficiency
and bit rate drop. To this aim, portable devices were used for
functional ability monitoring, rehabilitation, and elderly surveil-
lance, in order to monitor both subject’s posture and activity
intensity [2], [3]. Many papers on these topics suggested using
one [4] or several [5] monoaxial accelerometers placed on the
chest and thigh; more recently, triaxial accelerometers (custom-
developed by combining three monoaxial sensors [6], [7] or
commercial devices [8]–[10]) were also used.

Most of the signal-processing techniques base themselves on
updating few activity-related parameters at low frequency (typ-
ically, 1 Hz [8], [10]), computed over the raw signals acquired
at a higher rate (10−45 Hz [5], [8], [10]). Then, sets of thresh-
olds [5], decision trees [8], [11], or fuzzy logic [12], [13] are
applied to the extracted parameters in order to classify the activ-
ity. Focusing on the movement transducers, a three-axial micro-
electromechanical systems (MEMS) accelerometer is small and
lightweight enough to be easily embedded in a portable device,
or even integrated within a garment [14], [15]. In the former case,
sensor’s orientation may be set to have one sensing axis oriented
toward the gravity [7], [10]. On the contrary, the orientation of
an accelerometer placed in a garment cannot be set accurately
(and it may vary each time a subject wears the garment); few
papers face this critical point by looking, for example, at the
gravity acceleration as the time-invariant component [16].

Besides rehabilitation and elderly surveillance, wearable ac-
celerometers could assist to monitor workers operating in harsh
environments. The European Commission is paying great at-
tention to these applications [17], financing large projects, such
as WearIt@Work [18] and ProeTEX [15], [19], [20]; this latter
project aims at integrating MEMS accelerometers and other sen-
sors into firefighters and civil protection equipments, in order
to monitor physiological, environmental, and activity-related
parameters.

Aimed at worker’s surveillance applications, this paper deals
with the design of an algorithm that analyzes, in real time,
the signals produced by one three-axial accelerometer placed
on the trunk, in order to classify human activities and posture
transitions. With respect to previous works [21], [22], the main
peculiarities of this system consider the self-calibration skill
of the algorithm and the use of only one accelerometer, thus
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providing results comparable with the ones obtained by other
studies, where several sensors were used.

II. METHODS

A. Problem Definition and Constraints

In the context of worker’s monitoring, this paper deals with
the development of a real-time algorithm running on a micro-
controller, which identifies activity level and posture of opera-
tors “wearing” a triaxial accelerometer. The sensor is placed on
the upper trunk, inside a garment (i.e., a jacket). The algorithm
does not use any a priori information about sensor’s orientation.
Furthermore, the following constraints were taken into account.

1) Algorithm’s software is limited by the microcontroller
memory size (commonly few kilobytes).

2) The amount of data to be real-time processed on the chip
is limited by the device memory too; only few seconds of
signals can be processed at each time.

3) The CPU power limits the complexity of the algorithm.
Commonly, microcontrollers cannot implement computa-
tionally heavy algorithms, such as the fast Fourier trans-
form; simpler routines, based on time-derived features
processing, must be preferred [23]. Furthermore, the sam-
pling rate of the analog signals must be considered; too low
frequencies induce loss of information, whereas higher
rates increase the number of mathematical operations re-
quired for data processing. The scientific literature sug-
gests a suitable sampling rate of 50 Hz [8], [10].

4) Slight changes of the power voltage (due to portable batter-
ies discharge) and the environmental temperature may af-
fect sensor’s offset and sensitivity. Different studies faced
this problem in the past [24], [25]; according to the goal
of this study, we suggest an alternative, simple procedure
aimed at online updating these variables.

5) According to end-users needs, instead of detecting activi-
ties such as “walking,” “climbing stairs,” or “sitting,” the
system should provide a general estimation about sub-
ject’s activity level and posture. Moreover, it is important
to detect events, such as falls to the ground and extended
periods of inactivity (in particular, if the subject is lying
down). Finally, extended periods of intense activity should
be detected, too, since they may highlight physical stress
conditions.

Given these constraints, the developed algorithm analyzes
one-second-wide portions of raw accelerometric signals in “real
time” to measure posture and activity intensity. Then, it further
processes these parameters, in order to output a “global” label
describing the activity. Moreover, the classifier associates a “re-
liability” value to each output, based on the posture and activity
intensity values. Such parameter may be useful in higher level
decision-making process.

B. Instrumentation

A portable device for activity monitoring should be made
of three main components: sensor (a triaxial accelerometer, in
this study), processing unit (a microcontroller), and wireless
transmission unit. Concerning the first one, we chose a triaxial

MEMS accelerometer, model ADXL330 (by Analog Devices,
Inc., USA [26]): it measures accelerations in a range of ±3 g1

and it has a sensitivity of about 300 mV/g. Since sensitivity
and offset depend on power-supply voltage, these values dy-
namically change during time because of battery discharge. The
sensor detects both gravitational and inertial accelerations: the
former is always perceived by the sensor, whereas the latter is
induced by subject motion. Sensor’s placement roughly depends
on the kinds of activities to detect [21]; when precise a priori
orientation of the sensor is needed, it could be placed in the
lower part of the trunk, at waist [10] or lumbar [6] level. In our
case, no reference is needed; thus, the sensor is located in the
upper part of the trunk, where body rotations and activity inten-
sity are easier to be detected. Hence, this location was chosen
when designing the sensors network of ProeTEX garments [15].

An ADUC7027 microcontroller (by Analog Devices, Inc.)
has been coupled with the accelerometer. It is a 16-bit/32-bit
reduced instruction set computer (RISC) machine with
ARM7TDMI-core and up to 41 MIPS peak performance. The
device is provided with 8 kB of static RAM (SRAM) and 62 kB
of nonvolatile Flash/EE onchip; it has an onchip oscillator and
a phase-locked loop (PLL) that generates an internal frequency
clock of 41.78 MHz. The core operates at this frequency, or
at binary submultiples: in this study, the frequency was set at
1.31 MHz, as a compromise between computing capabilities and
current consumption (1 MIPS and 7.2 mA, at 25 ◦C) [27]. The
controller integrates a 16-channels 12-bit analog to digital con-
verter (ADC). The device filters the incoming signals, by means
of a first-order low-pass analog filter, at 20 Hz (since frequencies
of human movements are lower [28]); then, it digitally samples
the signals at 50 Hz. The microcontroller implements the algo-
rithms described in Section II-C, and each second it transmits an
output code to a monitoring PC by means of a Bluetooth mod-
ule (F2M03GLA-S01 by Free2Move, Halmstad, Sweden). A
remote software (developed in LabVIEW G language) records
data on the PC.

C. Classification Algorithm

1) Signal Conditioning and Calibration: The accelerometer
produces three analog signals (x(t), y(t), and z(t)), with values
ranging between zero and the current power voltage (vss(t)). The
classifier processes these four signals, sampled at 50 Hz. Ac-
cording to its datasheet, when the sensor does not measure any
acceleration along one sensing axis (due to gravity or subject’s
activity), it produces a V0 output

V0 = 0.5vss . (1)

The sensitivity of each axis (S) is roughly proportional to vss

S ≈ 0.1vss . (2)

Before further processing, a fifth-order digital mean filter is
applied to the signals to erase high-frequency-noise components
[10]. Then, the voltages are converted into accelerations (xG , yG ,

1With symbol g, we intend gravity acceleration, namely ≈9.806 m/s2 .
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and zG ), measured as multiples of g

xG =
(

x − V0

Sx

)
yG =

(
y − V0

Sy

)
zG =

(
z − V0

Sz

)
.

(3)
Equation (2) initializes S, but it does not take into account

the random fluctuations of sensitivity caused by environmen-
tal parameters, like the temperature; furthermore, vss changes
with time, thus V0 and S should be periodically calibrated. Sev-
eral papers faced the problem of dynamically estimating the
sensitivity of the accelerometer [25], [29], [30]; all proposed
solutions based themselves on the observation that g is the only
perceived acceleration, when the sensor does not move. Ac-
cording to sensor’s specifications [26], the sensitivities of the
three channels are identical and V0 is given by (1); therefore,
the model proposed in [25] can be simplified as follows:(

x − V0

S

)2

+
(

y − V0

S

)2

+
(

z − V0

S

)2

= 1. (4)

Due to (1) and (3), a more reliable value of S, replacing the
one provided by (2), is as follows:

S =
√

(x − 0.5vss)
2 + (y − 0.5vss)

2 + (z − 0.5vss)
2 (5)

S must be calculated only when the device is steady, other-
wise (4) is false. In our scenario, a subject cannot be asked to
stay motionless for few seconds after wearing the sensorized
garment. Therefore, a self-calibrating procedure was foreseen;
as soon as the microcontroller is switched on, it calculates rough
V0 and S values, by means of (1) and (2). It uses these values
to estimate the accelerations [see (3)], until a new parameters’
evaluation is possible. When a period of immobility is detected
(see Section II-C3), the routine computes V0 and S with (1) and
(5) and it starts a counter, which is updated every second. When
the counter reaches 120 ticks, an “update” flag is turned on;
in this condition, as soon as a new immobility period is detected,
the routine updates the calibration parameters and reinitializes
the counter.

2) Frequency Separation: The frequency separation of
gravitational and inertial accelerations allows discrimination
between posture-related and activity-related signals [10]. Low-
frequency signals (gcx , gcy , and gcz in the following text) ap-
proximate the gravitational acceleration, which provides the
sensor orientation; high-frequency signals (icx , icy , and icz

in the following text) approximate the inertial accelerations
(caused by movements). As proposed by Karantonis et al. [10],
the developed routine extracts the former signal from the cali-
brated accelerations with a third-order digital elliptical IIR filter
(with a cutoff frequency of 0.3 Hz, 0.1 dB passband ripple, and
stopband at −100 dB). The difference between original signals
and filter’s outputs approximate the inertial accelerations.

3) High-Frequency Component Analysis (Activity and Pos-
sible Fall Detection; Calibration Parameters Update): An in-
dex proportional to the inertial acceleration magnitude (which
is independent of the orientation of the sensor) provides a
global indicator of the activity intensity. Signal magnitude area
(SMA) [6], [10] is an appropriate index, since it shows high
correlation with the metabolic energy expenditure [31]. SMA is

Fig. 1. Based on the combination of SMA, orientation, and angular speed, (left
panel) activity levels and postures are determined and (right panel) combined
using rules to obtain the classification. (∗) OUT6: subject is lying down (P1),
while 1 s before was upright (P0), vice versa for OUT7—subject is upright
(P0) and was laying down (P1) 1 s before. (∗∗) Every time OUT6 is produced,
a further analysis is performed to detect a possible fall (OUT8): if output of
“possible fall classifier” in 1 of the last 3 s is F1 and output of “rotational
speed classifier” is R1 in the same interval (high body rotational speed), then
the subject enters this condition.

evaluated every second (t = 50 samples) on the inertial signals
with the following equation:

SMA =
1
t

(∫ t

0
|icx | dt +

∫ t

0
|icy | dt +

∫ t

0
|icz | dt

)
. (6)

The real-time integration is performed by means of simple
summations of the icx , icy , and icz values each time a new
sample is available and dividing the sum by 50 each second.

SMA is used both to identify activity intensity and possible
falls to the ground. Concerning the former outcome, two thresh-
olds were defined based on a database of stereotyped activities
(including standing, walking, running, climbing stairs, jumping,
and falling on a mattress) performed by ten healthy subjects dur-
ing preliminary tests: 0.2 g (low activity threshold or lat) and
0.7 g (high activity threshold or hat). Every second, the subject
is classified as motionless (here defined as output A0) if SMA
is lower than lat. When SMA is between lat and hat, the class
becomes performing mild activities (A1). A value higher than
hat means that the subject is performing intense activities (A2).
The calibration routine described in Section II-C1 is performed
when the subject is in A0 state. Moreover, SMA is used to detect
high-energy events, such as falls: a fall threshold (ft) was set at
2.1 g. The subject is classified in no fall class (F0) when SMA
is lower than ft; otherwise, she/he enters the possible fall class
(F1). The activity-detection routine is summarized in Fig. 1.

4) Low-Frequency Component Analysis (Posture Detection):
The use of low-frequency accelerations to assess posture has
been discussed in [7], where a Kalman-filter-based algorithm is
applied to estimate inclination and rotational speed of the body
with high accuracy. Since the application described here requires
lower precision (body inclination is used only to discriminate
between upright or lying down postures), we designed a simpler
routine. The primal idea is borrowed from [16], describing a
method to detect the vertical acceleration, given the raw signals
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Fig. 2. Evaluation of the subject posture independent of the sensor orientation.
X, Y, and Z are the orthogonal axes of the sensor. GC0 : initial detected gravity
vector. GC1 and GC2 : gravity vectors detected at time 1 and 2, respectively.

of a random-oriented triaxial accelerometer. In the system de-
scribed in this study, a software routine computes the orientation
by processing the average low-frequency accelerations (namely
GCx , GCy , and GCz ), which were evaluated on 1 s time win-
dows, of the gcx , gcy , and gcz signals, respectively. GCx , GCy ,
and GCz return an estimation of the mean gravity components
in the orthogonal reference system of the accelerometer. When
the subject moves, the sensor modifies its orientation, thus, the
perceived gravity components also change: a large change with
respect to the initial values proves a change of posture.

The first step of this routine foresees the detection of the
initial sensor’s orientation toward the gravity (GCx0 , GCy 0 ,
and GCz 0 in the following text). This orientation represents the
initial posture of the subject. Once again, the application context
does not allow asking a rescuer to wear the sensorized garment
and stay in a stereotyped posture for few seconds waiting for
the calibration. Thus, the routine automatically measures the
initial orientation when it detects the first period of inactivity
(see Section II-C3). Moreover, we made the hypothesis that
the subject is standing when dressing the garment (since the
sensor is placed inside a jacket, it is likely that he wears it when
standing, or sitting with erected trunk).

Once estimated, GCx0 , GCy 0 , and GCz 0 are compared to
GCx , GCy , and GCz , respectively, in time: a fast way to per-
form this comparison consists of computing, at each second i,
the scalar product between the initial gravity vector (GC0) and
the current gravity vector (GCi) [16]. Then, according to the
definition of scalar product, a simple division by the product
of the two vectors’ magnitudes returns the cosine of the angle
between the two vectors cos(α0,i). Given this parameter, two
posture classes can be identified, due to a threshold set at 0.5
(cosine of 60◦) [10]: standing (output P0, if cos(α0,i) ≥ 0.5)
and lying down (P1, if cos(α0,i) < 0.5). This procedure does
not catch the direction of the postural change (i.e., if the sub-
ject has tilted-up forward, backward, or on one side); rather,
it allows detecting only postural orientation changes. In short,
it is possible to imagine a cone centered in the initial gravity
vector, with semiangle vertex of 60◦ (see Fig. 2): if, at time i, the
gravity vector belongs to the cone, then the subject is classified
as standing (GC1 in Fig. 2); if the vector goes out of the cone,
then the subject is classified as lying down (GC2).

A similar procedure allows estimation of trunk’s rotation
speed. At time i, the scalar product between the current orienta-
tion vector (GCi) and the orientation vector referred to the previ-
ous second (GCi −1 ), divided by the product of the two vectors’

magnitudes, measures the cosine of the angle described by the
trunk between time i − 1 and time i, here defined as cos(αi −1,i).
Since the time interval is 1 s, this value is equivalent to the
cosine of the average rotation speed in the last second (ex-
pressed in degrees per second). High angular speed identifies
rapid changes of trunk’s orientation (i.e., events, such as falls to
the ground). Therefore, a threshold on cos(αi −1,i) can be set to
a reasonable value of 0.71 (cosine of 45◦): a value of cos(αi −1,i)
higher than this threshold (average speed lower than 45◦/s)
means low body rotation speed (output R0), whereas a value
lower then the threshold implies high body rotation speed (R1).

5) Global Classification: Each second, a routine combines
the aforementioned outputs by means of logic rules and returns a
code pointing out an activity class. Two main groups of activities
were considered: steady movements (activities that can be per-
formed for long times) and posture transitions (from standing
to lying down and vice versa). The routine classifies the for-
mer ones as OUT1 (upright standing), OUT2 (motionless lying
down), OUT3 (upright mild activity), OUT4 (upright intense ac-
tivity), and OUT5 (active lying down). A further analysis detects
posture transitions as OUT6 (upright to lying down), OUT7 (ly-
ing down to upright), and OUT8 (fall to the ground). The right
panel of Fig. 1 reports the classification strategy.

6) Reliability Parameter Evaluation: Each second, the
global classifier clusters the activity in one of the eight afore-
mentioned outputs. Anyway, such a classification scheme does
not guarantee the reliability of the classification. Thus, each
output is coupled with a reliability value, ranging between 0
(unreliable output) and 1 (highly reliable detection). The com-
putation of this value is based on the Euclidean distance between
each index and the class thresholds. Precisely, the algorithm cal-
culates the reliability of the partial classifications QA , QF , QP ,
and QR (associated to the outputs A, F, P, and R, respectively),
with the following formula:

Q = min
(

1, |v − th|
d

)
(7)

where v is the current value of the variable [SMA, cos(α0 , i), or
cos(αi−1,i)], th is the threshold used to classify the value into
one of the classes (A, F, P, or R), and d is the size of the uncer-
tainty region. When the distance between value and threshold
is higher than d, the classification is certain (Q equal to 1); oth-
erwise, the lower is the distance between v and th, the higher is
the classification uncertainty (the lower is Q). Fig. 3 reports the
reliability functions associated to the four partial classifiers out-
puts. Finally, partial reliabilities are combined using the same
rules described in the previous paragraph with fuzzy logic in-
stead of Boolean operators (the minimum between two values
substitutes the logic “AND” operator and the maximum between
two values substitutes the logic “OR”).

III. EXPERIMENTAL TRIALS AND RESULTS

A. Experimental Setup

A session of trials was realized to assess the performance of
the classifier. Six healthy adult subjects (22 to 37 years old) were
asked to execute two sequences of 36 predefined activities each,
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Fig. 3. Reliability functions associated to the four partial classifiers.
(a) Activity-level classifier (A outputs). (b) Possible fall classifier (F outputs).
(c) Posture classifier (P outputs). (d) Body rotational speed classifier (R outputs).

involving both steady activities and posture transitions. The ex-
periments were carried out in a gym, where the subjects were
free to move in a seminatural way. The steady activities required
during the trials (and the respective correct class) were: upright
standing and sitting down (upright standing); walking (upright
mild activity); running and jumping (upright intense activity);
bending over to pick up objects from the ground, moving trunk
and arms without walking, and climbing wall bars (upright mild
or intense activity); staying motionless when lying down (mo-
tionless lying down) and moving when lying down (active lying
down). The performed posture transitions were: falling to the
ground (fall to the ground), standing to lying down (upright to
lying down), and getting up from ground (lying down to up-
right).2 A test driver verbally asked the subject to perform the
activities, with “generic” requests, like “please, start running,”
“now walk,” etc. He did not provide any further instruction.
Beginning and end times of each activity were manually an-
notated (therefore, a ±1 s precision at the beginning and end
of each activity were taken into account when comparing the
output of the classifier with the expected one). All subjects were
asked to execute steady activities for at least 20 s. The trials
lasted about 7 min each. Therefore, more than 94 min of sig-
nals were analyzed (corresponding to 5688 samples), including
336 steady actions (5373 samples) and 96 postural transitions
(315 samples). Since one of the features to be tested was the
autocalibration routine, one of the two sequences started with
an activity (walking) phase.

2Bending over, moving trunk, and climbing wall bars cannot be a priori
classified as mild or intense activities, since subjects were free to perform slow
or fast actions. Moving when lying down considers subjects moving their trunk as
they preferred (i.e., from supine to prone) or moving limbs. Fall to ground means
that subjects dropped on a mattress after standing or doing intense activities
(running or jumping); falls on mattress are supposed to be less intense than real
falls (both in terms of activity level and rotational speed); thus, good detection
of falls with this protocol implies a better detection of the real ones.

TABLE I
PERCENTAGES OF SAMPLES OF EACH PERFORMED ACTIVITY AS CLASSIFIED IN

EACH OUTPUT CLASS

TABLE II
PERCENTAGES OF POSTURE TRANSITIONS AS CLASSIFIED BY THE DEVELOPED

ALGORITHM

B. Results

The accuracy of the classifier in detecting the five aforemen-
tioned steady activities was assessed with a second-by-second
comparison of its output with the expected class, derived from
manual annotations of beginning and ending time of each activ-
ity. Given the scarce precision of the synchronization imposed
by the manual annotation, the first and last second of each ac-
tivity were not taken into account in the comparison. Thus, the
validation procedure was carried out on 4365 samples. Table I
reports the confusion matrix that summarizes results, in terms
of percentage of samples belonging to each steady activity as
classified by the algorithm. Globally, it assigns, to the expected
“steady-activity” class, 96.20% of the samples (4199 over 4365).

The algorithm detects and classifies the posture transitions
applying a flag to the sample in which the transition is identi-
fied; for this reason, a second-by-second comparison with the
expected class is not possible. Thus, we considered a correct de-
tection when the right OUT6–OUT8 flag is generated in one of
the seconds manually accounted as belonging to the posture tran-
sition activity. Table II summarizes these results. Besides con-
fusion between falls and other upright to lying down transitions,
one fall and the subsequent “getting up from ground” movement
were not recognized as posture transitions (they happened at the
beginning of an acquisition, before the first immobility phase,
and thus, before the autocalibration routine could be applied to
the signals). Moreover, two misclassifications (“upright to lying
down” and subsequent “lying down to upright” transitions) hap-
pened during one “climbing wall bars” activity, due to the fact
that a subject bended its trunk more than the 60◦ threshold, which
is used to distinguish between upright and lying down postures.

Fig. 4 summarizes the achieved results concerning the “relia-
bility” value associated to each steady activity sample, in terms
of average and standard deviation evaluated over all the samples
correctly and wrongly classified in the five classes.



CURONE et al.: REAL-TIME AND SELF-CALIBRATING ALGORITHM BASED ON TRIAXIAL ACCELEROMETER SIGNALS 1103

Fig. 4. Reliability of the correct- and wrong-classified samples for each ex-
pected classifier output: mean value ± standard deviation.

TABLE III
CONFUSION MATRIX SUMMARIZING THE PERFORMANCE OF THE

POSTURE CLASSIFIER

Finally, concerning the hardware, the algorithm runs on the
microcontroller with memory occupation of less than 10 kB;
the interrupt routine requires 15 ms and it consumes 7.2 mA
(with the processor working at 1.31 MHz) for sampling and
processing. Further hardware and firmware optimization will be
discussed in future works, since this paper wants to focus only
on algorithmic aspects of the system.

IV. DISCUSSION

The results reported in Section III summarize the performance
of the algorithm in classifying the activities carried out by six
adult subjects during the validation tests; this section reports a
more in-depth analysis of the results concerning steady activities
and posture transitions.

The confusion matrix in Table I shows, as for all activities,
the percentage of correct detections is over 90%, ranging from
90.6% of samples belonging to the “sitting down” activity, cor-
rectly accounted as “upright standing,” to the 99.9% of sam-
ples belonging to the “walking” activity, correctly classified as
“upright mild activity.” Moreover, the amount of correct clas-
sifications in 10 trials over 12 is higher than 94%; just in two
trials, the classification errors raised to 9.7% and 12.1%, respec-
tively, concentrated in the first activities, before the automatic
calibration of the sensor could take place.

A correct classification implies that both subject posture and
activity level are correctly identified. In order to quantify the
performance of the posture-detection algorithm, we considered
two groups of activities: one including the activities carried
out with the subject standing (independently of movements’
intensity) and one including the activities with the subject lying
down. Results are presented for the posture in a two row—two-
column confusion matrix in Table III. Only 0.5% of the samples

TABLE IV
CONFUSION MATRIX SUMMARIZING THE PERFORMANCE OF THE ACTIVITY

INTENSITY CLASSIFIER

(17 over 3413) with the subject standing were confused for
lying down activities; at the same time, a lying down subject
was confused for upright subject in 1.6% of the samples (15
over 952) only. A similar analysis can be applied to the activity-
intensity detection by considering only activities belonging to a
single SMA range (partial classes A0, A1, or A2) and splitting
them in three classes (namely, motionless upright or lying down
in a first group, walking in a second group, and jumping or
running in a third one): Table IV shows that 94.9%, 99.9%, and
98.2% of samples are correctly classified in terms of activity
intensity in the three aforementioned group respectively. These
results are somehow comparable with the outcomes of [21]; in
this paper, the authors analyzed user-annotated data collected
in free-living conditions (aspects which can affect and reduce
the performance of the classifier) and were able to recognize 20
different daily activities, by analyzing the signals of five worn
triaxial accelerometers (thus, with a system more complex than
the one described in this paper). Moreover, the authors discarded
all signals fragments belonging to the first 10 s at the beginning
of each activity. If data given in [21] are grouped in terms of
activity intensity (which can be presumed by a description of
the movements to recognize), their classifier correctly identifies
95.7% of the samples belonging to the “standing still” class and
95.0% of the samples to the “lying down” class. Moreover, it
correctly distinguishes between inactivity and mild activity in
98.7% of the samples.

Our algorithm’s accuracy is comparable with the one of the
classifiers described in a recent paper [32], producing 97% of
correct classification for the “lying down” status, 98% for the
“sitting,” and 81% for “standing.” Furthermore, they recognize
“walking” as a “mild activity” in 89% of the samples. This
study foresees processing of the signals detected with two ori-
ented, hip- and wrist-mounted, triaxial accelerometers [32]. The
authors tested several classifiers, based on minimum-distance
principle, k-nearest neighbor, and support vector machines, us-
ing both time- and frequency-domain features as inputs. They
concluded that using one accelerometer, fixed to the hip, and
one simple linear classifier are enough to achieve good classifi-
cation accuracy, if the signal features are appropriately selected.
These conclusions perfectly match our experimental setup and
the basic idea of the developed algorithm. Besides this, the
features used by the classifier presented here do not require
any a priori knowledge about sensor’s orientation. Similar re-
sults and conclusions are reported in another recent work [33],
in which several classifiers were tested for more than 68 h
on raw accelerometric data, recorded both in supervised and
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unsupervised conditions (out-of-laboratory settings, with user’s
self-annotating their activities).

Results reported in Section III show that the developed clas-
sifier recognized 94 posture transitions over 96; the two errors-
concerned activities carried out before the autocalibration pro-
cedure could occur, at the beginning of an acquisition. A key
aspect that should be furthermore explored is the distinction be-
tween falls to the ground and other upright to lying down tran-
sitions. Nonetheless, the classifier is currently able to capture
87.5% of the falls and 83.3% of the other upright to lying down
transitions: these outcomes are comparable with the algorithm
described in [10] (using a triaxial accelerometer, whose axes are
oriented according to the body symmetry axes; therefore, rec-
ognizing posture changes by analyzing only one acceleration
component): this classifier detects 74.1% of the upright to lying
down transitions and 100% of the falls to the ground preceded,
as in our case, both by resting and intense activities.

Our system can be further compared with the one developed
by Karantonis et al. [10] in terms of hardware: the algorithm pre-
sented here works on a microcontroller with a clock frequency
of 1.31 MHz (against the 4.31 MHz frequency of the processor
used for that application) and similar power consumption.

Finally, results reported in Fig. 4 point out that using a simple
routine based on the comparison of the partial outputs of the
classifier with fixed thresholds could be useful in order to asso-
ciate a “reliability” value to each output (which is substantially
lower in case of wrong detections, since in these conditions at
least one partial output of the system is closer to the threshold
separating the classes); the appropriate use of this value should
be taken into account in future research.

V. CONCLUSION

This paper presents a human activity classifier, based on the
real-time analysis of the signals detected with a triaxial ac-
celerometer fixed to the trunk. Low-level routines, suitable for
implementation on a low-power microcontroller, process the raw
accelerometric signals in order to extract simple features, which
are directly related to the posture and activity intensity. Features
extraction is independent of sensor’s orientation with respect
to the body. These features are exploited by a global classifier,
which detects both steady activities (activities that can be exe-
cuted for long time) and posture transitions. Preliminary tests,
carried out on six subjects in a gym demonstrated that the al-
gorithm recognizes all activities with an accuracy higher than
90%. Once designed a stable release of the routine, important fu-
ture developments will consider the hardware improvement and
optimization of the device (suitable for integration in a jacket,
containing sensor and microcontroller) in which the algorithm
is implemented.
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