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ABSTRACT The Hodgkin-Huxley model of the nerve axon describes excitation
and propagation of the nerve impulse by means of a nonlinear partial differential
equation. This equation relates the conservation of the electric current along the
cablelike structure of the axon to the active processes represented by a system
of three rate equations for the transport of ions through the nerve membrane.
These equations have been integrated numerically with respect to both distance
and time for boundary conditions corresponding to a finite length of squid axon
stimulated intracellularly at its midpoint. Computations were made for the
threshold strength-duration curve and for the repetitive firing of propagated
impulses in response to a maintained stimulus. These results are compared with
previous solutions for the space-clamped axon. The effect of temperature on
the threshold intensity for a short stimulus and for rheobase was determined
for a series of values of temperature. Other computations show that a highly
unstable subthreshold propagating wave is initiated in principle by a just thresh-
old stimulus; that the stability of the subthreshold wave can be enhanced by
reducing the excitability of the axon as with an anesthetic agent, perhaps to the
point where it might be observed experimentally; but that with a somewhat
greater degree of narcotization, the axon gives only decrementally propagated
impulses.

INTRODUCTION
Hodgkin and Huxley (1952) have formulated a complete mathematical model
of the squid axon which can be solved to describe excitation and propagation of the
nerve impulse. In this model, the total membrane current (In) at any point along
the axon is given by the sum of the displacement current of the membrane capaci-
tance (C-dV/dt) and the current carried by the movement of ions through the
membrane (hj). From their analysis of voltage-clamp measurements, they showed
that the ionic current could be resolved into two major components, one carried by
sodium ions, the other by potassium. Each component was found to be linearly
proportional to its respective electrochemical driving force. But the proportionality
constants, the specific sodium and potassium ionic conductances, were found to be
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highly nonlinear functions of the membrane potential and of time. In the absence of
detailed knowledge of the molecular dynamics of the membrane, the functional de-
pendence of the conductances was described empirically by a system of first-order
rate equations. The complete model for the axon is then obtained by inserting the
equations for Im at any point into an appropriate equation for the conservation of
current along the axon.

In general, the distribution of membrane current in a uniform unmyelinated axon
is described by the partial differential equation for a one dimensional cable; i.e.,

-a aV a3V
2R OX2 Im t + Ii@ (1)

Previous applications of the model to the squid axon have been restricted to either
of two constraints upon the cable equation which simplify the complete model to a
system of ordinary differential equations. By appropriate experimental procedures
the membrane potential can be constrained to have the same value along a finite
length of axon (space-clamp constraint). Hence, equation (1) is simplified to

Im= C dt + I, (2)dt

Under this condition the model predicted the waveform of the membrane action
potential, subthreshold responses, the time course of the membrane conductance
change, refractoriness, and the net exchange of sodium and potassium ions (Hodgkin
and Huxley, 1952), which agreed well with independent experimental measure-
ments. Subsequently, the space-clamp model has been solved for the threshold
strength-duration curve and repetitive firing (Cole et al., 1955; FitzHugh and
Antosiewicz, 1959) to account for the effect of the calcium ion concentration on
excitability (Huxley, 1959a) and to investigate the theoretical behavior near
threshold (FitzHugh, 1961). The alternative constraint on equation (1) is ob-
tained by assuming that the propagating nerve impulse is a uniform wave, i.e.
V(x, t) = V(x - Ot), where 0 is the conduction velocity. Hence, equation (1) is
simplified to

a d2V C dV + (3)2R_02 'dt2 =~dti+. 3

By a laborious trial and error procedure, Hodgkin and Huxley (1952) found a
value of 0 which yielded a solution to equation (3) and this solution predicted a
waveform of the normal propagating impulse and its velocity in good agreement
with experimental measurements. In a later theoretical investigation Huxley (1959b)
found that there exist two other solutions of equation (3), corresponding to a single
subthreshold wave and an indefinitely long train of subthreshold oscillations, which
propagate much more slowly than the normal impulse. Presumably, such subthresh-
old waves would be very unstable and perhaps not observable in an experiment.
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The initiation of propagated impulses in an unconstrained axon can be examined
theoretically only by solving the partial differential equation (1). FitzE-ugh (1962)
has treated the special case of the vertebrate myelinated axon, in which regeneration
of the propagating impulse takes place at discrete points (the nodes of Ranvier)
well separated along an otherwise passive cable. Each node was represented by ap-
propriate scaling of the Hodgkin-Huxley equations on the basis of the essential
similarity of the current-voltage relations of a node and the squid axon (Dodge Md
Frankenhaeuser, 1958). Solution of this model accurately described the initiation
and saltatory conduction of the impulse in the myelinated fiber. However, because * f
the fundamental differences in cable structure, these results are not directly ap-
plicable to the continuous unmyelinated axon.
We have programmed the IBM 7094 computer to solve the nonlinear partial dif-

ferential equation of the Hodgkin-Huxley model for the squid axon. With such
solutions we haxe examined some of the classical excitation phenomena and have
investigated the stability properties of the subthreshold propagating waves.

EQUATIONS
For these computations we have considered a long uniform axon, bathed by a large
volume of sea water, and stimulated with an intracellular microelectrode at its mid-
point. The lumped equivalent circuit corresponding to these conditions is shown in
Fig. 1.

In a large volume, the external longitudinal resistance is negligible in comparison
with the internal. The axon is divided into numerous segments, 8x in length, suf-
ficiently short that the membrane potential (V) can be considered uniform over a
segment. The membrane characteristics are represented by the Hodgkin-Huxley
ordinary (space-independent) differential equations scaled to the area of a segment.
Adjacent segments are connected by a resistance r8x, where r is internal resistance
per unit length.
An appropriate finite difference approximation to the partial differential equation

(1) is conveniently derived from this equivalent circuit. For any segment, except
the one at the stimulating electrode (x = 0), the total membrane current (im) must
be equal to the difference between the longitudinal current which enters from the left
and that which leaves to the right; i.e.,

im = (V-1 - V3/r5x) - (Vi - V,+1/r5x). *. Y21- (4)
This equation is normalized to membrane current density by the relations Im =
im/27raSx and r = R/7ra2, yielding

a V1-I - 2V, ± V,+1Imi = 2 R.,Vj_l-2Vj+ Vjl (j = 1, 2, 3 ... *J). -Tj-(5)
For the boundary conditions at the stimulating electrode (x = 0), im = I. +
(V1 - Vo/rSx) - (V0 - V1/r8x). The assumed conditions imposed symmetry
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with respect to x = 0; i.e., in general Vf = Vs. Applying this symmetry condition
and normalizing as above, yields

I.°= a2'-( Vo V)]i) (6)me x L2wa R ax UI

For the boundary condition at the end of the axon, we simply assume

VJ+1 0. (7)
With this rather unrealistic assumption we avoid computing the spread of depolariza-
tion from the cut end of the axon. However, we do not avoid the distortion of the
longitudinal current as an impulse approaches the end; hence, the computations
were carried out for an axon at least a centimeter longer than the spatial dimension
of interest.

The mathematical model is summarized by the following equations (Hodgkin
and Huxley, 1952). [Note, in conformity with recent practice, the sign convention
for current and potential is taken here in the sense opposite to that used by Hodgkin
and Huxley.] The variables and constants are defined in the Key to Abbreviations.

KEY TO ABBREVIATIONS
Variables:

t = time (msec)
Xj = j8x = distance along axon (cm) from stimulating electrode
VY (t) = membrane potential (mv), measured in the sense of internal minus external

potential, with the zero of potential scale arbitrarily assigned to the resting
potential, at the jth segment

Imj (t) = total membrane current density (,ua/cme) at the jth segment
I, 1(t) = ionic current density (,ua/cme) at the jth segment
I. = amplitude of the stimulating current (Aa) at x = 0
Mi, hj, nj = HH conductance variables (dimensionless) at the jth segment

Constants (standard values):
a = radius of axon (0.0238 cm)
R = specific resistance of axoplasm (34.5 ohm cm)
C = specific membrane capacitance (1 jAf/cmS)
gNa = maximum sodium conductance (120 mmho/cm2)
VN. = sodium equilibrium potential (+115 mv)
gK = maximum potassium conductance (36 mmho/cma)
Vi = potassium equilibrium potential (-12 mv)
gL = nonspecific leakage conductance (0.3 mmho/cm2)
VL = equilibrium potential of leakage current (+10.598 mv)

Dot notation is used to denote differentiation with respect to time. Equation (8)
describes the conservation of the capacitative, local circuit and ionic currents at any
point. Equation (9) relates the local value of the ionic current to the specific ionic
conductances and the respective electrochemical driving forces. Equations (10),
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FiGuRE 1 Lumped equivalent
tions described in text.
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circuit representing a continuous axon under condi-

(11), and (12) empirically describe the functional dependence of the ionic con-

ductances upon the local value of the membrane potential.
CVj = Imi -ij (j= 0,1,2--- J)

Iif g=9N.Mfhf(V; - VNS) + gKnf(Vj + gL(VV VL)

rhi = am(l - mi) - flmj

hi = ah(l - hi) - #,Akh
Ij = a,(1 - n1) - fl.n1,

(8)

(9)
(10)

(1 1)

(12)

where I., is given by equations (5) and (6). The empirical rate constants (a's and fl's)
are evaluated for each V, according to the approximating functions given by Hodgkin
and Huxley (1952), which are appropriate to this standard temperature of 6.30 C.
For any other temperature, all the rate constants are multiplied by the factor 0, where
= 3T6.3/10. The relatively small temperature dependence of gN. and gB (Moore,

1958) has been neglected.
For all calculations the initial conditions corresponded to a uniform resting state;

i.e., all Vi = 0 and all mi, hi, and ni had their steady-state values for V = 0.

NUMERICAL INTEGRATION METHOD

For the integration with respect to time we have used a constant integration step (Ot) be-
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cause, as long as the potential spike is somewhere on the axon, St must be small enough to
permit an accurate calculation of the rapid changes accompanying it.
For the description of the integration, values of variables at time tk will have the super-

script "k" affixed. The first step is to calculate an approximate set of values of Vk+' with
the open integration formula

Vk+ = Vt + At V, (13)

using the values of the independent variables at t = tk. Formula (13) could be used with n, m,
and h to yield an acceptable solution at the new time level, but, for accuracy and numerical
stability, a very small At would be required. Instead, closed integration formulas which are
numerically stable and give accuracy of high order in At are used. The formulas used here are
obtained from the trapezoidal rule of integration and may be written

,= V A+_t (V + 7k+l) (14)

ni n
+ AT .k+1) (15)

with similar equations for m and h. We write the time derivative of V in the form

r; = C{2RA i(V,j- 22V + Vj+1) - gi( V - Us)} (16)
where

g=gK +gN. +gL (17)

U gK VK + g9N VNa + gL VL
g

This is substituted for jV +i in equation (14) and the resulting system of equations is
written

AO1 VO +1 - V11+1 = B+1
-VS1 + Ak+1 Vx+1 - Vk+1 = Bk+1 (18)

-V_1 + AJ VJ = Bk+
where

=t+ 2RAX2 ( + k+1 +,i a \Avt /g' ) + (19)

Bj = 2RA- 2 vk + k +gk+1 uk+1 +k}

I,, = I, if j = 0 and I,, = 0 otherwise. Substituting for it` in equation (15) and
solving for n` gives

k Atk+1ni 2 +ani
n+l- (20)

1+ At (ak+f + #BnS )
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Similar equations are obtained for m and h.
The entire numerical procedure for advancing all variables by one time step is as

follows:
(a) Values of V^, n', m', h', j = 0, 1,2,2 , J at t = t4 are used in equation (16)

to evaluate V,' which is then used in equation (13) to obtain a first approximation
to V:+1

(b) The a's and 13's of the rate equations are calculated with the approximate V'I
and used in equation (20) to get approximate values of n<+', m"', and h',+',

(c) The permeabilities are computed from nI+1, m + , and h`+1 and from these,
k+1 and Uj1+I and then A`+1 and B` 1, defined by equation (19), are evaluated.
(d) The system of equations (18) is solved by the algorithm:
Let ro = 0, X0 = 0.
For j = 1, 2, * - * , J calculate

r, = (As- ri-o-)
and

Xi = r,(X,.1 + Bj).
Let V*+ = X
For j=J-1, J-2, ,c calculate

Vj*+1 = x, - ri vj^++.
This yields a new set of values of V1.+

(e) If the correction to Vj+1 is more than a prescribed convergence criterion, taken
here as 10' mv, there is a return to step 2 and the cycle is repeated (with the standard
values of Ax = 0.05 cm, St = 0.01 msec, it was usually necessary to go back to step 2
two or three times). Otherwise, this time step is finished.
The results of a representative computation, illustrating the response to a short

strong stimulus (about 2 times threshold) are plotted in Fig. 2. Because of the sym-
metry about x = 0, a pair of impulses arises at the stimulating electrode and propagate
away in both directions. One is impressed by how quickly, in response to a strong
stimulus, the propagating impulse achieves a constant conduction velocity. The
velocity, measured by the displacement of the inflection of the rising phase per unit
time, is already within a fraction of a percent of its constant value immediately after
the action potential at x = 0 has reached its maximum.
An empirical test of the accuracy with which the difference equation approximates

the partial differential equation is made by comparing this solution (for some point
far away from the stimulating electrode) with the uniform wave solution of equation
(3) (Hodgkin and Huxley, 1952; FitzHugh and Antosiewicz, 1959). The two wave-
forms superimpose (within the accuracy of the plots) over most of this time course;
that is, they agree well in peak amplitude (90.5 mv) and duration, but a slight dis-
crepancy (depending on the spatial integration interval, Ax) can be seen in the ex-
ponentiation rate in the foot of the rising phase. Comparison of the predicted conduc-
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a.

b.

t(Mc)
FIGURE 2 Computed response of the Hodgkin-Huxley axon to an 0.2 msec long
stimulus of 10 ,ua (about 1.5 threshold) plotted as V against x for various times
(a.) and as V against t for various distances (b.) 18.5° C. Integration parameters,
ax = 0.05 cm, J8x = 5 cm, AT = 0.01 msec.

tion velocities provides a more sensitive test. These results are summarized in Table I.
These results comfirm the general expectation that the finite-difference approximation
should become more accurate as bx is made smaller. In addition, a temporal inte-
gration interval (5t) at least as large as 0.01 msec appears to give sufficient accuracy,
since a value one fifth as large has practically no effect on the solution.

RESULTS AND DISCUSSION
The Threshold Strength-Duration Curve. The minimum intensity of

stimulating current (I) required to initiate a propagating impulse has been estimated
for several stimulus durations (t,). Because each test stimulus required about 3
min of computing time simply to determine whether the axon had fired, we were
satisfied to estimate the threshold stimulus as the mean between super- and sub-
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TABLE I

CONDUCTION VELOCITY (0) AT 18.50C AND THE SPACE CONSTANT OF THE
FOOT OF THE PROPAGATING ACIION POTENTIAL (X') DETERMINED FOR

SEVERAL VALUES OF THE INTEGRATION PARAMETERS

ax at e xi

cm msec m/sec cm
0.05 0.01 18.694 -0.175
0.05 0.002 18.692
0.025 0.01 18.724 -0.172
0.0125 0.01 18.732
Uniform wave as- 18.743396 -0.1692
sumption (equa-
tion 2)

threshold values differing by less than 1%. The results for two temperatures are
given in Table II.

These theoretical predictions conform well to the empirical generalizations that
for short duration stimuli the threshold is satisfied by a minimum quantity of charge,
i.e. I8-4 -> Qo, whereas for long duration stimuli the threshold intensity asymp-
totically approaches a minimum value, the rheobase (IO).
The threshold strength-duration relation for the space-clamped theoretical axon

has been determined previously by Cole et al. (1955) and FitzHugh and Antosiewicz
(1959). A simple basis for normalizing and comparing the various computational
results is not at all obvious in the nonlinear processes described by the Hodgkin-
Huxley model. However, such a basis is provided (Cole et al., 1955) by the classi-
cal phenomenological theories of excitation, in particular, the "two real time-factor"
theories variously formulated by Hill, Rashevsky, and Monnier. Consideration of
the classical theories may be justified by the fact that they quite accurately describe

TABLE II

THRESHOLD STIMULI ESTIMATED AS THE AMPLITUDE OF A RECTANGULAR
PULSE OF CURRENT (I,) OF DURATION (t.) AT TEMPERATURES

OF 6.30C AND 18.5° C.

msec 6.3 ° C ,ua 18.5 ° C
0.05 34.6 26.4
0.1 17.6 13.4
0.2 8.94 7.13
0.5 3.76 3.33
1.0 2.06 2.07
2.0 1.238 1.57
4.0 0.887

co 0.823 1.53
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experimental data. In Hill's formulation, an effective time constant for excitation (T)
is defined by

T = Qo/lIo
and all possible threshold strength-duration curves are bounded by the limiting
forms

I,Io = I I - exp (_r)
and

I/Io = /[r. exp( e )
T

The present results for the continuous (cable model) axon and the previous results
for the space-clamped axon are compared with equations (21) and (22) in Fig. 3.
From the comparison we observe that the continuous theoretical axon conforms
more closely to the classical theory than does the space-clamped axon, but in both
cases, the deviations are small. As shown by the normalizing factors, the effective
time constant for excitation (-r) at a given temperature is significantly faster in the
case of the continuous axon. This result is explained by the fact that the continuous

10

I 5

T(C) Q0(nou :o( -)
* CABLE MODEL 1835 133
A CABLE MODEL 6.3 L71 0.82

o SPACE-CLAMP 20.0 6.92 5.57
SPACE-CLAMP 6.3 6.401 2.241

I II 1 -1.1 -_- I

T(Id
QST

2.08
1.24
2.856

0.0 0.2 0.4 0A - 0.8 1.0 1.2 L.4
-/r

FIGURE 3 Comparison of the strength-duration relations of the theoretical axon for
both the continuous (cable model) axon and for the space-clamped axon, with the
limiting forms of the strength-duration curves predicted by the classical "two real-time
factor" theories, equations (21) and (22).
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axon requires a somewhat larger depolarization at the stimulating electrode in order
to compensate for the electrical load of adjacent passive cable, and as a consequence
of the greater depolarization the permeability changes underlying excitation occur
more rapidly.
The effect of temperature on the excitability of the continuous axon was ex-

amined in greater detail by determining the threshold intensity for a brief (50 /usec)
stimulus and for rheobase at several different temperatures. As shown in Fig. 4, the

40 \ 1X

,,30_ _ _ _ J

go 1~~~~~~~~~~~~~o
IN

0 --5 10 15 20 25 30 35
TEMP (C)

FIGURE 4 Temperature dependence of threshold stimulating current I.. The short-
shock (0.05 msec) threshold decreases monotonically (upper curve) while the rheo-
base (lower curve) increases with temperature.

equations predict that the short-shock threshold decreases monotonically with
temperature whereas the rheobase increases with temperature. From solutions of
the model under the uniform wave assumption (equation 3), Huxley (1959a)
found that the theoretical axon was incapable of uniformly propagating an impulse
at temperatures above 33.50C.

For the space-clamped theoretical axon, FitzHugh (1966) has found that the
rheobase increases with temperature, but that the short-shock threshold follows a
shallow U-shaped curve with the optimum temperature at about 15° C. Recent
experimental measurements show substantial qualitative agreement with the theoreti-
cal predictions. Guttman (1966) has measured the excitability of an axon under
the space-clamp constraint and found that the rheobase increases with temperature,
and that for short shocks the data suggest, but do not establish, an optimum tem-
perature; on the other hand, Sjodin and Mullins (1958) observed that for 1 msec
duration stimuli applied to a continuous axon, the threshold decreased mono-
tonically with temperature.

Repetitive Firing of the Continuous Axon. Cole et al. (1955) have shown
that the space-clamped theoretical axon will generate an indefinitely long train of
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impulses in response to a constant current of sufficient intensity. Repetitive firing is
of particular interest as an analogue for that part of various sensory receptors which
transduce a slow generator potential into frequency of impulses in the sensory axon.
Whereas the sensory transducer can often modulate the frequency over a hundred
to one range, the space-clamped squid axon has only a very narrow range of about
three to one (FitzHugh, 1961; Frankenhaeuser and Vallbo, 1965). We were,
therefore, interested in seeing what effect the cable properties might have on the
repetitive firing.

The partial differential equation was solved for step stimuli of various amplitudes,
and representative solutions are plotted in Fig. 5 as the voltage response at the

2 .0p

FlGuRE S Response of the continuous axon to a steady stimulus of various intensities
showing time course of the membrane potential V at x = 0 (heavy lines) and at x =
2 cm (lighter lines).

stimulating electrode (heavy curves) and at 2 cm away. The most striking result is
that over the range of stimulus intensities which yield repetitive, propagating im-
pulses, there is practically no modulation of the frequency of impulses. Indeed, if
we compare the records at the extremes of this range, we see that the interval be-
tween impulses for 8.0 lxa is only 30% less than that for 3.2 Mua. Thus, when the
cable properties are considered, the theoretical squid axon appears to be even less
adequate as a model for the impulse transducing region of a sensory axon.
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The computed result for the strongest stimulus shows that the theoretical axon,
like a real axon, does not fire a burst of impulses in response to the intense depolari-
zation at a cut end of the axon.

Initiation of a Subthreshold Propagating Wave. Huxley (1959b) demon-
strated that the second order differential equation (3) obtained by assuming uni-
form propagation of a wave has two solutions in addition to the normal impulse.
These solutions correspond to a single small wave and an indefinitely long series
of oscillations propagating at much lower velocities than the normal impulse. It
was presumed that these responses represent borderline cases between a superthresh-
old response and the local subthreshold response observable at a stimulating elec-
trode. As such, it was expected that they would be very unstable.
To investigate these points we have solved the continuous axon model for the

initial conditions that the resting axon is stimulated by brief (0.2 msec) pulses of
current whose intensity was successively adjusted to converge to the threshold value.
Some typical results are plotted in Fig. 6, where each set of curves shows the re-
sponses to a pair of stimuli bracketing the threshold by about ±0.7% in A,
+0.007% in B, and ±0.7 x 10-6% in C. For conditions A and B we see that
the superthreshold and subthreshold responses measured at the stimulating electrode
(x = 0) are readily distinguishable. When the stimulus is closer to threshold (B),
we see that the latency between the stimulus and the superthreshold response is
longer, and the amplitude of the superthreshold response at x = 0 is smaller. Ap-
proaching threshold (C), to the limit imposed by using single-precision floating
point numbers with eight significant figures, we see that the superthreshold and
subthreshold responses measured at the stimulating electrode and at 1 cm away
superimpose over most of their time courses. The common waveform measured
at 1 cm closely resembles the slow wave found by Huxley. With the precision em-
ployed for these computations, this slow wave does not propagate very far; the two
solutions have greatly diverged at 2 cm, the superthreshold response there being
only slightly smaller than the normal impulse.

These computations show that a slow subthreshold wave would be initiated, in
principle, by a threshold stimulus. Furthermore, they give an impression that the
slow wave is so unstable that we cannot expect to observe it experimentally. Leav-
ing aside such difficult questions as to the effect of nonuniformity of axon geometry
or membrane characteristics, this conclusion may be justified simply by considering
the electrical noise observed in a real axon. The effect of this noise is to cause ap-
parently random fluctuation of the threshold. Thus, if one measures the probability
of firing as a function of stimulus intensity, one obtains a density function that is
approximately Gaussian with a standard deviation of about 1%. On this basis
alone, one could expect to observe responses as close to threshold as Fig. 6B only
rarely in a long series of tests, and the probability of seeing responses like Fig. 6C
would be nil.
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FIGURE 6 Response of continuous axon to super- and subthreshold stimuli of 0.2
msec duration for various amplitudes converging towards threshold. Time courses of

at x = 0, 1, and 2 cm are plotted.

A rigorous mathematical test for the stability of the propagating waves has not
yet been developed. However, we can gain some insight into the highly unstable
behavior by considering the characteristic relation between the ionic current and
membrane potential in the voltage-clamp experiments (Hodgkin, Huxley, and
Katz, 1952, p. 439). At short times OIh/lV is negative and large at that value of
membrane potential corresponding to the amplitude of the subthreshold wave. This
relation means that a small depolarizing perturbation of the wave would cause (a
short time later) a large increase in inward ionic current which would act to regenerate
that perturbation, with the result that the wave would "flip" over to the normal stable
impulse. On this basis we would expect that any agent which reduced Oi/aV, say by
generally reducing the inward component of I,, would correspondingly lessen the
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degree of instability of the subthreshold wave. Hence, we were led to consider the
effects of local anesthetics on the initiation of the unstable waves.

Effects of an Anesthetic Agent on Excitation and Propagation. Voltage-
clamp studies have shown that local anesthetics, such as procaine and alcohol, exert
their narcotizing action by reducing kNa (usually gK is also reduced, but typically
not as much as gNa) without otherwise affecting the kinetics of the conductance
changes (Taylor, 1959; Moore et al., 1964; Moore, 1958; Armstrong and Binstock,
1964). To examine the effects of such agents on excitability, we have done some
computations for the condition that both gNa and gK were attenuated by the same
factor (v), and gL and VL were adjusted so that both the resting membrane potential
and resting conductance were held constant. To determine the range of v in which
the axon would be capable of propagating a uniform wave, equation (3) was solved
for several values of 7. The results of these computations are summarized in Fig.
7 where the conduction velocity (0) and the amplitude of the uniformly propagated

20
90

I18
80 -1
70 Vmax 14

>60 -2,
S
ox 50 -10E
E

40 - ~~~~~~~8
30 6
20 -4

0 0.2 0.4 0.6 0.8 1.0

FIGURE 7 Peak amplitude of the propagated impulse (Vm..) and conduction velocity
(0) plotted as functions of attenuation factor of the ionic conductances 1.

impulse (Vma,,) are plotted as functions of v7. The upper limbs of each curve cor-
respond to the normal (stable) impulse, and the lower limbs correspond to the
subthreshold (unstable) wave solutions; the differences in 0 between the two types
of subthreshold waves cannot be resolved on the scale of this plot. Except for
the fact that we made small adjustments of gL and VL, the curve of a versus v
could have been deduced from the dimensional considerations of Huxley (1959a).
From Fig. 7 we see that there are no uniform wave solutions for v less than 0.261,

and we expect only decrementally propagated responses, if any, for small q. An
example of this is illustrated in Fig. 8A, in which the partial differential equation
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A very strong stimulus was applied at x = B. B and C: Super- and subthreshold
response of the axon when gNs and gR have been attenuated to V3 their normal values.
Plotted as Y against t for x = O, 1, and 2 cm. The curve at x = 1 cm in part C illus-
trates the unstable wave under these conditions.

was solved for v = 0.25. A somewhat surprising result from this computation is the
slow rate of decrement under this condition; indeed, the response to a strong
stimulus is still some 40 mv in amplitude at 4 cm away from the stimulating electrode.
For a lesser degree of narcotization, say vq = 0.33 for example, the axon is

capable of uniformly propagating both a stable and an unstable wave, which can
easily be distinguished, the stable wave being about 60 mv in amplitude with a
conduction velocity of 12 m/sec and the unstable wave being about 30 mv with
a velocity of 6 m/sec. Solutions of the partial differential equation for 77 = 0.33,
illustrating responses near threshold, are shown in Fig. 8B and C. In Fig. 8C we
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see that the responses to super- and subthreshold stimuli differing by one part in
104 are indistinguishable at 1 cm away from the stimulating electrode, and that this
waveform corresponds quite well in amplitude and velocity to the unstable wave
solution. This result suggests that under an appropriate degree of narcotization the
subthreshold propagating wave might be experimentally observable.
Received for publication 4 January 1966.
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