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Abstract

Understanding and modelling liver biomechanics represents a significant challenge due to the complex 

nature of this organ. Unfortunately, there is no consensus on liver viscoelastic properties, and results 

are strongly dependent on sample type and status, adopted testing method, and testing conditions. 

Standard force-triggered tests (e.g. step response or dynamic mechanical tests) necessitate an initial 

contact between sample and testing apparatus, which may result in significant pre-stress to very soft 

and highly hydrated samples. In a previous study we proposed the epsilon dot method (���): a testing 

and analysis framework to address the drawbacks of standard mechanical tests. Focusing on ex-vivo 

unconfined bulk compressive tests, here we use both ��� and dynamic mechanical analysis (DMA) to 

derive liver viscoelastic parameters in the region of small strains or the linear viscoelastic region 

(LVR). As liver samples were visibly deteriorated at the end of frequency sweep tests, a modified 

approach was adopted to reduce DMA testing times. This approach, termed step-reconstructed DMA 

(SRDMA), is based on dynamic measurements around specific frequencies and then reconstruction of 

liver behaviour in the entire frequency range of interest. The instantaneous elastic modulus obtained 

from SRDMA tests (2.65 ± 0.30 kPa) was significantly higher than that obtained with the ��� (2.04 ± 

0.01 kPa). We show that the overestimation of stiffness is due to data acquisition in a local rather than 

an absolute LVR, highlighting the importance of using a rapid and zero pre-stress approach to 

characterise very soft and highly hydrated biological tissues. 
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1. Introduction 

Although the mechanical properties of structural materials have been well described for decades using 

various testing methods, there is still a scarcity of reliable and reproducible data for most biological 

soft tissues. Characterising the heterogeneous, non-linear viscoelastic behaviour of soft non load-

bearing tissues (such as liver, kidney and brain) is very challenging, and a standard testing method is 

needed to produce repeatable results that can be mathematically modelled to derive the mechanical 

behaviour of a given tissue. Ideally, tissue characterisation via constitutive modelling requires the 

control of both geometric and environmental boundary conditions. One of the main difficulties in 

developing appropriate viscoelastic models for soft tissues is the establishment of suitable experimental 

testing setups and protocols for the unique identification of material parameters. Generally, soft tissues 

can be characterised under two different conditions, namely in-vivo and ex-vivo. In-vivo testing 

maintains the tissue in its natural state, but has many limitations, such as accessibility, ill-defined 

boundary conditions, ethical issues in using animals and potential risks to human subjects. Several in-

vivo mechanical measurements are reported in the literature, with datasets often limited to small 

deformations. Furthermore, the interpretation of data is challenging due to difficulties in obtaining 

appropriate alignment between the instrument and tested specimens, the presence of physiological 

noise and the inability to account for and control the internal condition of the organ (Brown et al., 

2003; Gefen and Margulies, 2004; Tay et al., 2002). Conversely, ex-vivo experiments are preferable 

when developing testing devices and protocols, as well for ease of testing, control of boundary 

conditions and ethical considerations (Gao et al., 2010; Ocal et al., 2010; Raghunathan et al., 2010; 

Sakuma et al., 2003; Valtorta and Mazza, 2005). They are also suitable for the development of 

mechanically matched biomimetic scaffolds for in-vitro models and tissue engineering. 



4 

 

Like most internal organs, the liver essentially consists of a functional highly vascularised core 

composed of cells embedded in a hydrated, porous and intrinsically viscoelastic extracellular matrix 

(ECM). The organ is covered with a connective tissue capsule (i.e. the Glisson’s capsule) made of 

densely interwoven collagen fibres, which ensures its structural integrity (Brunon et al., 2010).  

Several methods and models are reported in the literature to characterise the mechanical behaviour of 

liver either ex-vivo or in-vivo based on: direct measurements on tissue (e.g. rheological (Kalanovic et 

al., 2003; Liu and Bilston, 2000; Marchesseau et al., 2010), compressive (Gao et al., 2010; Kemper et 

al., 2013; Pervin et al., 2011; Raghunathan et al., 2010), indentation tests (Jordan et al., 2009; Kerdok 

et al., 2006)) or imaging techniques (e.g. magnetic resonance (Asbach et al., 2008; Clarke et al., 2011; 

Haghpanahi and Naeeni, 2010; Klatt et al., 2007; Venkatesh et al., 2008), ultrasound-based 

elastography (Adebajo et al., 2012; Chenot et al., 2009; Ferraioli et al., 2013; Yoon et al., 2012)). The 

first studies on the mechanical behaviour of animal and human livers were principally focused on the 

investigation of static material properties (Carter et al., 2001; Nava et al., 2008; Roan and Vemaganti, 

2007; Tay et al., 2002). Viscoelastic properties have been explored only recently, typically using stress-

relaxation and dynamic loading experiments to measure either time- or frequency-dependent material 

properties, respectively (Liu and Bilston, 2000; Pervin et al., 2011). The development of imaging 

elastography systems has also contributed to the study of the frequency dependence of liver mechanical 

properties (Kruse et al., 2000; Valtorta and Mazza, 2005). Chatelin et al. compared in-vivo ultrasound-

based transient elastography (TE) and ex-vivo rheometry tests (DMA) on porcine livers, demonstrating 

that the elastic properties measured by the two methods are equivalent (Chatelin et al., 2011). It is 

worth noting that due to its highly heterogeneous structure, most of the mechanical models of liver 

published to date are not material constitutive laws, but rather a means to quantify the gross tissue 

mechanical properties and to determine the time scales of liver viscoelasticity, often attempting to 
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correlate them with different tissue conditions such as pathophysiological states or tissue ageing. 

Indeed, despite the large number of investigations and reports, there is no consensus on the mechanical 

properties of liver, or other soft tissues in general. Reported dynamic moduli span from few to tens of 

kPa (Marchesseau et al., 2010) and are strongly dependent on the adopted testing method and 

experimental conditions as well as sample type. In particular, the physical condition of the tissue 

(Kerdok et al., 2006), post-mortem time or preservation period (Ocal et al., 2010), pathophysiological 

state  (Mazza et al., 2007; Wang et al., 1992; Yeh et al., 2002), tissue preload (Clarke et al., 2011; Yeh 

et al., 2002) and gravity (Gao et al., 2010) can all affect sample status, and hence its mechanical 

properties. Moreover the specific tissue model used, e.g. purely elastic versus viscoelastic, strongly 

conditions the estimated tissue viscoelastic parameters. 

Clearly, this is a vast and multifaceted area of research wherefrom emerges the need to clearly identify 

the parameters of interest and then, based on available testing equipment, choose the appropriate 

experimental set-up and analysis method. This need, coupled with the high variability and 

inconsistency of published data on liver mechanical properties, motivated us to develop a reliable 

quantitative testing and analysis framework for characterising the viscoelastic mechanical behaviour of 

very soft and highly hydrated biological tissues ex-vivo. In this context, our main focus was the use of 

common mechanical testing apparatus to measure hepatic tissue properties in the region of small and 

physiologically relevant deformations, where soft tissues can be approximated as linear viscoelastic 

materials. In general, soft tissue mechanical testing is beset by two main problems. First, the issues 

related to establishing working conditions which ensure that each sample is in the same reproducible 

status before testing. Secondly, standard force- or strain-triggered tests (e.g. step response or dynamic 

mechanical tests) are affected by the long duration of tests and the need of an initial contact between 

sample and testing apparatus, likely causing significant pre-stress and sample deterioration. Our aim 
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was thus to standardise sample preparation with defined, controlled and rapid testing conditions in 

order to minimise tissue deterioration and guarantee a standard reproducible initial sample status. 

Hence, two different testing methods were established to derive the viscoelastic parameters of hepatic 

tissue through unconfined compressive tests within the linear viscoelastic region (LVR).  

The first is based on the ��� (epsilon dot method) which we recently proposed for testing and parameter 

derivation of soft hydrated materials (Tirella et al., 2013), while the second is the dynamic mechanical 

analysis (DMA) with a restricted number of discrete frequencies to reduce the duration of the test (i.e. 

step-reconstructed DMA, or SRDMA). 

With both methods, viscoelastic parameters of the hepatic tissue were estimated using a global fitting 

approach with shared parameters. The SRDMA and ��� are discussed and compared, highlighting the 

similarities, advantages and limitations of the two methods for characterising the viscoelastic behaviour 

of very soft, degradable and highly hydrated biological materials such as hepatic tissue. 

 

2. Materials and methods 

2.1. Sample preparation 

Fresh porcine livers from 1 year old healthy pigs were collected as a slaughter by-product and frozen at 

-20 °C within 3 hours of death. Prior to use, frozen livers were thawed at 4 °C overnight, then punched 

to obtain regular 14 mm diameter cylinders which were subsequently cut in 3 mm thick samples with 

parallel loading surfaces using a custom slicer and a microtome blade. Capsular connective tissue (i.e. 

Glisson’s capsule) was not present in tested samples and particular attention was dedicated to avoid 

macroscopic vasculature. We recently showed that the bulk compressive modulus (�) of porcine fresh 

liver does not change significantly with the sample harvesting site (i.e. different liver lobes) nor 
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between animals from the same slaughterhouse (Mattei et al., 2014). Furthermore, in agreement with 

Tamura et al. (Tamura et al., 2002), our results showed that a freeze-thawing cycle (samples stored at -

20 °C, then thawed at 4 °C overnight prior to testing) does not significantly affect the liver compressive 

modulus. Hence, thawed samples from multiple harvesting sites were used for all tests. To ensure 

repeatable testing conditions, thawed liver samples were equilibrium swollen in PBS 1X at 4 °C and 

then brought to room temperature prior to testing (Mattei et al., 2014; Yeh et al., 2002). Samples were 

carefully measured in thickness (��) and diameter (�) just before testing (hence accounting for any size 

variations due the swelling process). Measurements were performed by gently placing the jaws of a 

calliper (0.05 mm resolution) in contact with the sides of the sample, averaging readings from at least 

three different points. Samples were tested partially immersed in PBS 1X to preserve their hydration 

during the unconfined compression test (Mattei et al., 2014; Tirella et al., 2013). Mechanical tests were 

performed within 2 weeks after sample collection. 

 

2.2. ��	

The ��� is based on the application of a series of short compressions at different strain rates to 

specimens while acquiring force and displacement versus time data in the LVR (Tirella et al., 2013).  

Tests were performed with a uniaxial testing device (Zwick/Roell ProLine Z005) equipped with a 10 N 

load cell (Zwick/Roell Xforce HP 10 N), applying strain rates of 0.001, 0.005, 0.01 and 0.05 s-1 to liver 

samples. In particular, force and displacement versus time data were acquired starting with the upper 

plate of the testing device (connected to the load cell) close to but not in contact with the sample, to 

guarantee a zero pre-stress initial condition and a constant approach velocity. Experimental force- and 

displacement-time series were respectively normalised to sample cross-sectional area (
���) and 
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thickness (��) measured just prior to testing, obtaining stress- and strain-time series. Liver LVR was 

identified as the region in which stress varies linearly with applied strain (R2 of at least 0.995). Then, 

stress-time data within LVR obtained from measurements at different strain rates were used to derive 

viscoelastic constants for lumped parameter models using the global fitting procedure with shared 

parameters described in Supplementary Information (SI 3). Six liver samples were tested at each strain 

rate, using a new sample for each repeat; total number of specimens = 24.  

 

2.3. Dynamic mechanical testing method 

Dynamic mechanical analysis (DMA), a standard force-triggered method, was used to determine 

material viscoelastic properties by applying a small amplitude cyclic strain on a sample and measuring 

the resultant cyclic stress response. The tests were performed compressing samples at room 

temperature using a GABO Eplexor 150 N (Gabo GmbH, Ahlden, Germany). The trigger force was set 

to a value of 10 mN, which we identified as the minimum reliable starting force of the instrument. In 

this set of experiments, the LVR was considered as the range of strain amplitudes in which the storage 

modulus changes by less than 5% of its initial value. To identify the LVR for frequency sweep tests, a 

preliminary series of strain amplitude sweep tests at 1 Hz was conducted. 

 

2.3.1. Conventional dynamic mechanical tests 

To assess any possible change in liver mechanical properties due to tissue deterioration while standing, 

equilibrium swollen samples were kept in PBS 1X at room temperature for different times prior to 

testing (i.e. 0, 2, 4, 20, 24 h). Frequency sweep tests were then performed in triplicate in the frequency 

range 0.05÷100 Hz, choosing 1% static and 0.5% dynamic strain amplitudes to guarantee a linear 
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response, as outlined in Supplementary Information SI 1. Note that each sweep test took about 1 hour 

and 30 minutes to complete. 

 

2.3.2. Step-reconstructed dynamic mechanical tests 

The SRDMA approach is based on performing short frequency sweeps around selected frequencies (f = 

0.5, 1, 10 and 50 Hz): specifically, measurements were performed at the selected frequency f, and f ± 

0.1 Hz on the same sample. Equilibrium swollen samples were tested after being brought to room 

temperature choosing 1% static and 0.5% dynamic strain amplitudes to lie within liver LVR. Liver 

dynamic mechanical behaviour was then reconstructed over the whole investigated frequency-range 

(SRDMA) as described in the Supplementary Information. Compared with the 0.05 ÷ 100 Hz 

frequency sweep test, this approach enables a shorter testing phase (i.e. less than 5 minutes in the 

longest test, 0.4 ÷ 0.6 Hz frequency range), hence preventing any significant sample deterioration. Note 

that, since each sample was tested only once to prevent permanent alterations due to repeated testing 

cycles, 12 liver samples were required to perform the SRDMA analysis in triplicate around the four 

selected frequencies. Cyclic tests at each of the single frequencies investigated around 1 Hz were also 

performed on independent samples. No significant differences in E’ and E’’ were measured between 

independent samples tested at 0.9, 1 and 1.1 Hz with respect to those obtained by sequential tests at 0.9, 

1 and 1.1 Hz on the same sample (data not reported), confirming the absence of sub-failure loading in 

the SRDMA approach.   

 

2.4. Lumped parameter estimation  

Liver samples were treated as mechanically isotropic materials (Marchesseau et al., 2010; Mattei et al., 

2014; Pervin et al., 2011). In the region of small deformations, the viscoelastic behaviour of soft and 
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hydrated materials can be derived using classical lumped parameter models such as the Maxwell 

Standard Linear Solid (SLS) (SI 1). As described in the Supplementary Information, two models, the 

SLS and the GM2 (2-arm Generalised Maxwell model) were used to estimate the material coefficients 

for liver tissue (SI 2). A global fitting approach was employed performing chi-square minimisation in a 

combined parameter space (SI 3). In order to select suitable parameter initial guesses, an annealing 

scheme, multiplying and dividing each initial parameter by 10 individually while keeping the 

instantaneous modulus at a constant value (i.e. a constant sum of all springs in the model), was 

adopted. In this way reliable and absolute hepatic viscoelastic parameters within the investigated 

frequency range were obtained, while avoiding most of the local minima during the fitting procedure. 

A lower boundary was set to prevent the fitting procedure returning negative values for the estimated 

viscoelastic coefficients. Comparisons between parameter values were made using the Student’s t-test, 

setting significance at p < 0.05. 

 

3. Results

3.1. ��	

As sketched in Fig. 1a, the measured sample stress is zero while the plate approaches the sample, prior 

to the instant of contact to ensure no pre-stress acting on tested sample (zone A). Further advancement 

results in a slight negative stress, mainly due to water mediated adhesive forces between the plate and 

the sample (zone B). Zone C, represents the actual compression of the sample: in this region the stress 

increases monotonically with time. Experimental stress-time data collected at various strain rates are 

shown in Fig. 1b, where the time axis has been offset to be zero at the beginning of sample 

compression (i.e. zone C). Only stress-time data belonging to the LVR are shown. In all experiments 

the LVR extended up to a strain of 0.03, therefore the higher the strain-rate, the shorter the duration of 
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the stress-time series (Fig. 1b). Liver samples did not demonstrate any visible changes at the end of the 

rapid ��� compressive tests. 

 

3.2. DMA: frequency sweep test 

Using the conventional DMA approach, strain amplitude sweep tests underlined that sample LVR 

extended up to 2% strain, in accordance with Marchesseau et al. (Marchesseau et al., 2010). However, 

at the end of the frequency sweep test, samples were found to be highly compressed, dark brown and 

dehydrated likely due to the very long testing time. This is clearly highlighted in Fig. 2 in which the 

sample height decreases rapidly at the lower frequencies. As the sweep begins, cyclic stresses cause 

fluid expulsion from the tested sample, so that additional compression is required to reach the trigger 

contact force necessary for successive testing cycles.  

Consequently, the measured storage and loss moduli likely reflect sample deterioration and water 

elimination rather than the dynamic mechanical properties. In fact, no meaningful trends in E’ and E’’ 

were found between measurements performed at different preservation times (Fig. 3) and the 

experimental results were not used further to derive liver viscoelastic parameters. 

 

3.3. SRDMA

We did not observe any deterioration in samples using the quicker SRDMA approach and sample 

compression at the end of the test was measured to be less than 2% of its initial height. 

SRDMA storage and loss moduli are presented in Fig. 4. As expected, the storage modulus increases 

with frequency up to the relaxation frequency and then remains almost constant. On the other hand, the 
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loss modulus increases with frequency reaching a peak value at the relaxation frequency (~ 1 Hz, at 

which maximum energy dissipation occurs) and then decreases to zero as the frequency is further 

increased, showing that liver mechanical behaviour is mainly elastic at high frequencies.  

 

3.4. Lumped parameter estimation using global fitting 

Fitting results for Maxwell SLS model are summarised in Table 1 where ����� and ��� represent the 

instantaneous (i.e. sum of all springs in the model) and equilibrium (i.e. E0) moduli, respectively, while 

�� is the ith -arm characteristic relaxation time, calculated as �����. Although convergence was obtained 

for both SRDMA and the ���, fitting the datasets to the GM2 model yielded non-significant results 

(data reported in Supplementary Information, SI 4) with very large standard errors, clearly indicating 

model over-parameterization for both ��� and SRDMA. 

 

4. Discussion 

Given that most testing methods for viscoelastic characterisation are overly long and may therefore 

deteriorate labile or living tissues, we investigated two different methods for rapid testing of soft 

materials in unconfined compression. Focusing on small deformations in the liver, all samples were 

tested in the LVR. The ��� consists in a short series of constant strain rate tests to determine lumped 

parameters from a series of stress-time data, while the SRDMA is based on a short series of frequency 

sweeps centred around selected frequencies of interest. The duration of the testing phase depends on 

the strain rate for ��� or on the frequency employed for SRDMA: the lower the �� or f the longer the 

test. In case of ��� we used strain rates between 0.001 and 0.05 s-1, while for SRDMA a frequency 
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range of 0.5 to 50 Hz was employed, thus tests were shorter than 30 s for the former and 300 s for the 

latter. In terms of magnitude, SRDMA storage and loss moduli are comparable to those reported by Liu 

and Bilston for bovine liver (G’ = 1 – 6 kPa, G’’ < 1 kPa, f = 0.006 – 20 Hz) (Liu and Bilston, 2000), 

Kiss et al. for canine liver (E’ = 3 – 8 kPa, E’’ = 0.8 – 4 kPa, f = 0.1 – 100 Hz) (Kiss et al., 2004) and 

Marchesseau et al. for porcine liver (G’ = 0.3 – 0.6 kPa, G’’ = 0.05 – 0.15 kPa, f = 0.1 – 4 Hz) 

(Marchesseau et al., 2010). However, the estimated viscoelastic parameters of liver, or highly non-

linear soft materials in general, are strongly dependent on the testing conditions.  

As mentioned in Section 2.3, a minimum contact force of 10 mN is necessary to trigger the GABO 

Eplexor 150 N. Given that sample surface area of samples is about 1.5 cm2, the trigger force results in 

an average sample pre-stress of 65 Pa with a consequent strain of about 4%. In this region, a local LVR 

can nevertheless be identified (Figure 5), albeit with a smaller linear range and a higher slope with 

respect to that obtained in the absence of pre-stress (i.e. the absolute LVR).  

To perform measurements in the absolute LVR, it is necessary to use methods which do not require a 

trigger force during the acquisition phase. In this perspective, the ��� is very suited for the testing of 

soft materials, as viscoelastic parameters can be derived with standard uniaxial testing devices, starting 

in a contactless configuration (Tirella et al., 2013). In fact without pre-stress, ����� was found to be 

significantly lower (2.04 ± 0.01 kPa) than the value estimated with SRDMA (2.65 ± 0.30 kPa, p = 

0.0174), demonstrating that the unavoidable trigger contact force causes sample stiffening. The effect 

of the trigger force is also reflected in the characteristic relaxation time: as shown in Table 1, the value 

of � estimated with the SRDMA was significantly lower than that obtained using the ��� (p < 0.0001), 

suggesting that pre-stressed samples exhibit a more elastic behaviour than in the absence of pre-stress. 
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Clearly, the estimated time constants depend strongly on the range of strain rates (in the case of ���) or 

frequencies (in the case of SRDMA) employed during testing. In both cases, an a priori knowledge of 

the relaxation behaviour of a material is desirable if one wishes to capture material viscoelastic features 

within a time frame of interest.  

 

5. Conclusion

The objective of this study was to formulate a reliable and reproducible method for the rapid testing 

and measurement of liver viscoelastic properties in the true LVR. To this end, two different methods 

(SRDMA and ���) were developed and used to derive the viscoelastic parameters of porcine liver 

samples. Attention was paid to tissue handling and treatment throughout the study, ensuring all samples 

were in a repeatable initial state. The study highlights the advantages and disadvantages of SRDMA 

and ���, in testing soft and degradable biomaterials. Although both methods permit considerable time 

savings and good sample preservation, in our opinion the ��� can give a better estimation of the 

viscoelastic parameters than does SRDMA, since it avoids sample pre-stress and allows measurements 

in the actual LVR. The ��� is, as far as we know, the only testing and analysis framework which 

enables the unique identification of viscoelastic parameters of soft materials - such as hepatic tissue - 

through direct measurements and in the absence of pre-stress. The results can be used to design 

mechanically matched hepatic tissue models and can also be extended to the characterisation and 

constitutive modelling of other soft tissues and materials, enabling comparisons across different 

studies.  
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Figure Legends 

Fig. 1: Epsilon dot method. a) Schematic of experimental testing setup and of a typical stress-time 

curve recorded during an ��� test. The measured stress is zero while the plate approaches the sample 

(zone A). Then it becomes slightly negative due to water mediated adhesive forces between the plate 

and the sample (zone B). Finally, the measured stress becomes positive, increasing monotonically with 

time, defining the zone of actual sample compression (zone C). b) Experimental stress-time data 

collected at various strain rates. The time axis has been offset to be zero at the beginning of the actual 

compressing phase (zone C) and only stress-time data belonging to the LVR (i.e. those used to estimate 

lumped parameters) are shown

Fig. 2 Change in sample height during frequency sweep measurements reflecting sample degradation 

while testing, n = 3

Fig. 3 Experimental a) E’ and b) E’’ of liver samples tested at different preservation times 

Fig. 4 Experimental a) E’ and b) E’’ obtained for liver tissue with SRDMA. Measurements were 

carried out at 12 frequencies (f = 0.5 ± 0.1, 1 ± 0.1, 10 ± 0.1 and 50 ± 0.1 Hz). Each point represents an 

average value of n = 3 independent experiments, while the dashed curve shows the SLS fitting 

Fig. 5 Liver stress-strain plot up to 0.10 true compressive strain, data obtained from an ��� test at 0.01 

s-1. Clearly, the absolute liver LVR is comprised in the 0 – 0.03 strain range, while local LVRs can be 

found depending on the measurement’s starting point (i.e. pre-strain). SRDMA analysis suffers from a 

4% pre-strain due to GABO Eplexor’s triggering force, from which a local LVR can be found, 

characterised by a smaller linear range and a higher slope with respect to the absolute LVR obtained in 

the absence of pre-stress, as outlined in the table insert
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Table Legends 

Tab. 1 Viscoelastic parameters of porcine liver estimated for Maxwell SLS lumped model using ��� 

and SRDMA. Results are expressed as estimated parameter value ± standard error 

  



24 

 

��	 SRDMA

Einst (kPa) 2.04 ± 0.01 2.65 ± 0.30 

Eeq (kPa) 0.91 ± 0.01 0.89 ± 0.22 

�1 (s) 1.10 ± 0.02 0.20 ± 0.06 

R2 0.97 0.92 
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