
Subgradients

• subgradients

• strong and weak subgradient calculus

• optimality conditions via subgradients

• directional derivatives

Prof. S. Boyd, EE364b, Stanford University

Basic inequality

recall basic inequality for convex differentiable f :

f(y) ≥ f(x) +∇f(x)T (y − x)

• first-order approximation of f at x is global underestimator

• (∇f(x),−1) supports epi f at (x, f(x))

what if f is not differentiable?

Prof. S. Boyd, EE364b, Stanford University 1

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) ≥ f(x) + gT (y − x) for all y

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1

Prof. S. Boyd, EE364b, Stanford University 2

• g is a subgradient of f at x iff (g,−1) supports epi f at (x, f(x))

• g is a subgradient iff f(x) + gT (y − x) is a global (affine)
underestimator of f

• if f is convex and differentiable, ∇f(x) is a subgradient of f at x

subgradients come up in several contexts:

• algorithms for nondifferentiable convex optimization

• convex analysis, e.g., optimality conditions, duality for nondifferentiable
problems

(if f(y) ≤ f(x) + gT (y − x) for all y, then g is a supergradient)

Prof. S. Boyd, EE364b, Stanford University 3

Example

f = max{f1, f2}, with f1, f2 convex and differentiable

x0

f1(x)
f2(x)

f(x)

• f1(x0) > f2(x0): unique subgradient g = ∇f1(x0)

• f2(x0) > f1(x0): unique subgradient g = ∇f2(x0)

• f1(x0) = f2(x0): subgradients form a line segment [∇f1(x0),∇f2(x0)]

Prof. S. Boyd, EE364b, Stanford University 4

Subdifferential

• set of all subgradients of f at x is called the subdifferential of f at x,
denoted ∂f(x)

• ∂f(x) is a closed convex set (can be empty)

if f is convex,

• ∂f(x) is nonempty, for x ∈ relint dom f

• ∂f(x) = {∇f(x)}, if f is differentiable at x

• if ∂f(x) = {g}, then f is differentiable at x and g = ∇f(x)

Prof. S. Boyd, EE364b, Stanford University 5

Example

f(x) = |x|

f(x) = |x| ∂f(x)

x

x

1

−1

righthand plot shows
⋃

{(x, g) | x ∈ R, g ∈ ∂f(x)}

Prof. S. Boyd, EE364b, Stanford University 6

Subgradient calculus

• weak subgradient calculus: formulas for finding one subgradient
g ∈ ∂f(x)

• strong subgradient calculus: formulas for finding the whole
subdifferential ∂f(x), i.e., all subgradients of f at x

• many algorithms for nondifferentiable convex optimization require only
one subgradient at each step, so weak calculus suffices

• some algorithms, optimality conditions, etc., need whole subdifferential

• roughly speaking: if you can compute f(x), you can usually compute a
g ∈ ∂f(x)

• we’ll assume that f is convex, and x ∈ relint dom f

Prof. S. Boyd, EE364b, Stanford University 7

Some basic rules

• ∂f(x) = {∇f(x)} if f is differentiable at x

• scaling: ∂(αf) = α∂f (if α > 0)

• addition: ∂(f1 + f2) = ∂f1 + ∂f2 (RHS is addition of sets)

• affine transformation of variables: if g(x) = f(Ax+ b), then
∂g(x) = AT∂f(Ax+ b)

• finite pointwise maximum: if f = max
i=1,...,m

fi, then

∂f(x) = Co
⋃

{∂fi(x) | fi(x) = f(x)},

i.e., convex hull of union of subdifferentials of ‘active’ functions at x

Prof. S. Boyd, EE364b, Stanford University 8

f(x) = max{f1(x), . . . , fm(x)}, with f1, . . . , fm differentiable

∂f(x) = Co{∇fi(x) | fi(x) = f(x)}

example: f(x) = ‖x‖1 = max{sTx | si ∈ {−1, 1}}

1

1

−1

−1

∂f(x) at x = (0, 0)

1

1

−1

at x = (1, 0)

(1,1)

at x = (1, 1)

Prof. S. Boyd, EE364b, Stanford University 9

Subgradients and sublevel sets

g is a subgradient at x means f(y) ≥ f(x) + gT (y − x)

hence f(y) ≤ f(x) =⇒ gT (y − x) ≤ 0

f(x) ≤ f(x0)

x0

g ∈ ∂f(x0)

x1

∇f(x1)

Prof. S. Boyd, EE364b, Stanford University 16

• f differentiable at x0: ∇f(x0) is normal to the sublevel set
{x | f(x) ≤ f(x0)}

• f nondifferentiable at x0: subgradient defines a supporting hyperplane
to sublevel set through x0

Prof. S. Boyd, EE364b, Stanford University 17

Optimality conditions — unconstrained

recall for f convex, differentiable,

f(x$) = inf
x

f(x) ⇐⇒ 0 = ∇f(x$)

generalization to nondifferentiable convex f :

f(x$) = inf
x

f(x) ⇐⇒ 0 ∈ ∂f(x$)

Prof. S. Boyd, EE364b, Stanford University 21

x

f(x)

x0

0 ∈ ∂f(x0)

proof. by definition (!)

f(y) ≥ f(x$) + 0T (y − x$) for all y ⇐⇒ 0 ∈ ∂f(x$)

. . . seems trivial but isn’t

Prof. S. Boyd, EE364b, Stanford University 22

Example: piecewise linear minimization

f(x) = maxi=1,...,m(aTi x+ bi)

x$ minimizes f ⇐⇒ 0 ∈ ∂f(x$) = Co{ai | aTi x
$ + bi = f(x$)}

⇐⇒ there is a λ with

λ / 0, 1Tλ = 1,
m
∑

i=1

λiai = 0

where λi = 0 if aTi x
$ + bi < f(x$)

Prof. S. Boyd, EE364b, Stanford University 23

. . . but these are the KKT conditions for the epigraph form

minimize t
subject to aTi x+ bi ≤ t, i = 1, . . . ,m

with dual

maximize bTλ
subject to λ / 0, ATλ = 0, 1Tλ = 1

Prof. S. Boyd, EE364b, Stanford University 24

Optimality conditions — constrained

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

we assume

• fi convex, defined on Rn (hence subdifferentiable)

• strict feasibility (Slater’s condition)

x$ is primal optimal (λ$ is dual optimal) iff

fi(x$) ≤ 0, λ$
i ≥ 0

0 ∈ ∂f0(x$) +
∑m

i=1 λ
$
i∂fi(x

$)

λ$
i fi(x

$) = 0

. . . generalizes KKT for nondifferentiable fi

Prof. S. Boyd, EE364b, Stanford University 25

Directional derivative

directional derivative of f at x in the direction δx is

f ′(x; δx)
∆
= lim

h↘0

f(x+ hδx)− f(x)

h

can be +∞ or −∞

• f convex, finite near x =⇒ f ′(x; δx) exists

• f differentiable at x if and only if, for some g (= ∇f(x)) and all δx,
f ′(x; δx) = gTδx (i.e., f ′(x; δx) is a linear function of δx)

Prof. S. Boyd, EE364b, Stanford University 26

Directional derivative and subdifferential

general formula for convex f : f ′(x; δx) = sup
g∈∂f(x)

gTδx

δx

∂f(x)

Prof. S. Boyd, EE364b, Stanford University 27

Descent directions

δx is a descent direction for f at x if f ′(x; δx) < 0

for differentiable f , δx = −∇f(x) is always a descent direction (except
when it is zero)

warning: for nondifferentiable (convex) functions, δx = −g, with
g ∈ ∂f(x), need not be descent direction

example: f(x) = |x1|+ 2|x2|
x1

x2

g

Prof. S. Boyd, EE364b, Stanford University 28

Subgradients and distance to sublevel sets

if f is convex, f(z) < f(x), g ∈ ∂f(x), then for small t > 0,

‖x− tg − z‖2 < ‖x− z‖2

thus −g is descent direction for ‖x− z‖2, for any z with f(z) < f(x)
(e.g., x$)

negative subgradient is descent direction for distance to optimal point

proof: ‖x− tg − z‖22 = ‖x− z‖22 − 2tgT (x− z) + t2‖g‖22

≤ ‖x− z‖22 − 2t(f(x)− f(z)) + t2‖g‖22

Prof. S. Boyd, EE364b, Stanford University 29

Descent directions and optimality

fact: for f convex, finite near x, either

• 0 ∈ ∂f(x) (in which case x minimizes f), or

• there is a descent direction for f at x

i.e., x is optimal (minimizes f) iff there is no descent direction for f at x

proof: define δxsd = − argmin
z∈∂f(x)

‖z‖2

if δxsd = 0, then 0 ∈ ∂f(x), so x is optimal; otherwise

f ′(x; δxsd) = −
(

infz∈∂f(x) ‖z‖2
)2

< 0, so δxsd is a descent direction

Prof. S. Boyd, EE364b, Stanford University 30

∂f(x)

xsd

idea extends to constrained case (feasible descent direction)

Prof. S. Boyd, EE364b, Stanford University 31

Subgradient method

subgradient method is simple algorithm to minimize nondifferentiable
convex function f

x(k+1) = x(k) − αkg
(k)

• x(k) is the kth iterate

• g(k) is any subgradient of f at x(k)

• αk > 0 is the kth step size

not a descent method, so we keep track of best point so far

f (k)
best = min

i=1,...,k
f(x(i))

Prof. S. Boyd, EE364b, Stanford University 1

Step size rules
step sizes are fixed ahead of time

• constant step size: αk = α (constant)

• constant step length: αk = γ/‖g(k)‖2 (so ‖x(k+1) − x(k)‖2 = γ)

• square summable but not summable: step sizes satisfy

∞
∑

k=1

α2
k < ∞,

∞
∑

k=1

αk = ∞

• nonsummable diminishing: step sizes satisfy

lim
k→∞

αk = 0,
∞
∑

k=1

αk = ∞

Prof. S. Boyd, EE364b, Stanford University 2

Subgradient Methods for Constrained Problems

• projected subgradient method

• projected subgradient for dual

• subgradient method for constrained optimization

Prof. S. Boyd, EE364b, Stanford University

Projected subgradient method

solves constrained optimization problem

minimize f(x)
subject to x ∈ C,

where f : Rn → R, C ⊆ Rn are convex

projected subgradient method is given by

x(k+1) = P (x(k) − αkg
(k)),

P is (Euclidean) projection on C, and g(k) ∈ ∂f(x(k))

Prof. S. Boyd, EE364b, Stanford University 1

same convergence results:

• for constant step size, converges to neighborhood of optimal
(for f differentiable and h small enough, converges)

• for diminishing nonsummable step sizes, converges

key idea: projection does not increase distance to x!

Prof. S. Boyd, EE364b, Stanford University 2

Linear equality constraints

minimize f(x)
subject to Ax = b

projection of z onto {x | Ax = b} is

P (z) = z −AT (AAT)−1(Az − b)

= (I −AT (AAT)−1A)z +AT (AAT)−1b

projected subgradient update is (using Ax(k) = b)

x(k+1) = P (x(k) − αkg
(k))

= x(k) − αk(I −AT (AAT)−1A)g(k)

= x(k) − αkPN (A)(g
(k))

Prof. S. Boyd, EE364b, Stanford University 3

Example: Least l1-norm

minimize ‖x‖1
subject to Ax = b

subgradient of objective is g = sign(x)

projected subgradient update is

x(k+1) = x(k) − αk(I −AT (AAT)−1A) sign(x(k))

Prof. S. Boyd, EE364b, Stanford University 4

problem instance with n = 1000, m = 50, step size αk = 0.1/k, f! ≈ 3.2

0 500 1000 1500 2000 2500 3000
10−2

10−1

100

101

k

f
(k

)
b
es
t
−

f
!

Prof. S. Boyd, EE364b, Stanford University 5

Projected subgradient for dual problem

(convex) primal:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

solve dual problem
maximize g(λ)
subject to λ (0

via projected subgradient method:

λ(k+1) =
(

λ(k) − αkh
)

+
, h ∈ ∂(−g)(λ(k))

Prof. S. Boyd, EE364b, Stanford University 6

Subgradient of negative dual function

assume f0 is strictly convex, and denote, for λ (0,

x∗(λ) = argmin
z

(f0(z) + λ1f1(z) + · · ·+ λmfm(z))

so g(λ) = f0(x∗(λ)) + λ1f1(x∗(λ)) + · · ·+ λmfm(x∗(λ))

a subgradient of −g at λ is given by hi = −fi(x∗(λ))

projected subgradient method for dual:

x(k) = x∗(λ(k)), λ(k+1)
i =

(

λ(k)
i + αkfi(x

(k))
)

+

Prof. S. Boyd, EE364b, Stanford University 7

• primal iterates x(k) are not feasible, but become feasible in limit
(sometimes can find feasible, suboptimal x̃(k) from x(k))

• dual function values g(λ(k)) converge to f! = f0(x!)

interpretation:

• λi is price for ‘resource’ fi(x)

• price update λ(k+1)
i =

(

λ(k)
i + αkfi(x(k))

)

+

– increase price λi if resource i is over-utilized (i.e., fi(x) > 0)
– decrease price λi if resource i is under-utilized (i.e., fi(x) < 0)
– but never let prices get negative

Prof. S. Boyd, EE364b, Stanford University 8

Example

minimize strictly convex quadratic (P) 0) over unit box:

minimize (1/2)xTPx− qTx
subject to x2

i ≤ 1, i = 1, . . . , n

• L(x,λ) = (1/2)xT (P + diag(2λ))x− qTx− 1Tλ

• x∗(λ) = (P + diag(2λ))−1q

• projected subgradient for dual:

x(k) = (P + diag(2λ(k)))−1q, λ(k+1)
i =

(

λ(k)
i + αk((x

(k)
i)2 − 1)

)

+

Prof. S. Boyd, EE364b, Stanford University 9

problem instance with n = 50, fixed step size α = 0.1, f! ≈ −5.3;
x̃(k) is a nearby feasible point for x(k)

5 10 15 20 25 30 35 40
−50

−40

−30

−20

−10

0

k

up
p
er

an
d
lo
w
er

b
ou

nd
s

f0(x̃
(k))

g(λ(k))

Prof. S. Boyd, EE364b, Stanford University 10

Subgradient method for constrained optimization

solves constrained optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

where fi : R
n → R are convex

same update x(k+1) = x(k) − αkg(k), but we have

g(k) ∈

{

∂f0(x) fi(x) ≤ 0, i = 1, . . . ,m,
∂fj(x) fj(x) > 0

define f (k)
best = min{f0(x(i)) | x(i) feasible, i = 1, . . . , k}

Prof. S. Boyd, EE364b, Stanford University 11

Convergence

assumptions:

• there exists an optimal x!; Slater’s condition holds

• ‖g(k)‖2 ≤ G; ‖x(1) − x!‖2 ≤ R

typical result: for αk > 0, αk → 0,
∑∞

i=1αi = ∞, we have f (k)
best → f!

Prof. S. Boyd, EE364b, Stanford University 12

Example: Inequality form LP

LP with n = 20 variables, m = 200 inequalities, f! ≈ −3.4;
αk = 1/k for optimality step, Polyak’s step size for feasibility step

0 500 1000 1500 2000 2500
10−2

10−1

100

101

k

f
(k

)
b
es
t
−

f
!

Prof. S. Boyd, EE364b, Stanford University 13

Decomposition Methods

• separable problems, complicating variables

• primal decomposition

• dual decomposition

• complicating constraints

• general decomposition structures

Prof. S. Boyd, EE364b, Stanford University

Separable problem

minimize f1(x1) + f2(x2)
subject to x1 ∈ C1, x2 ∈ C2

• we can solve for x1 and x2 separately (in parallel)

• even if they are solved sequentially, this gives advantage if
computational effort is superlinear in problem size

• called separable or trivially parallelizable

• generalizes to any objective of form Ψ(f1, f2) with Ψ nondecreasing
(e.g., max)

Prof. S. Boyd, EE364b, Stanford University 1

Complicating variable

consider unconstrained problem,

minimize f(x) = f1(x1, y) + f2(x2, y)

x = (x1, x2, y)

• y is the complicating variable or coupling variable; when it is fixed
the problem is separable in x1 and x2

• x1, x2 are private or local variables; y is a public or interface or
boundary variable between the two subproblems

Prof. S. Boyd, EE364b, Stanford University 2

Primal decomposition

fix y and define

subproblem 1: minimizex1 f1(x1, y)
subproblem 2: minimizex2 f2(x2, y)

with optimal values φ1(y) and φ2(y)

original problem is equivalent to master problem

minimizey φ1(y) + φ2(y)

with variable y

called primal decomposition since master problem manipulates primal
(complicating) variables

Prof. S. Boyd, EE364b, Stanford University 3

• if original problem is convex, so is master problem

• can solve master problem using

– bisection (if y is scalar)
– gradient or Newton method (if φi differentiable)
– subgradient, cutting-plane, or ellipsoid method

• each iteration of master problem requires solving the two subproblems

• if master algorithm converges fast enough and subproblems are
sufficiently easier to solve than original problem, we get savings

Prof. S. Boyd, EE364b, Stanford University 4

Primal decomposition algorithm

(using subgradient algorithm for master)

repeat
1. Solve the subproblems.

Find x1 that minimizes f1(x1, y), and a subgradient g1 ∈ ∂φ1(y).
Find x2 that minimizes f2(x2, y), and a subgradient g2 ∈ ∂φ2(y).

2. Update complicating variable.
y := y − αk(g1 + g2).

step length αk can be chosen in any of the standard ways

Prof. S. Boyd, EE364b, Stanford University 5

Example

• x1, x2 ∈ R20, y ∈ R

• fi are PWL (max of 100 affine functions each); f! ≈ 1.71

−1 −0.5 0 0.5 1
0.5

1

1.5

2

2.5

3

3.5

y

φ1(y)
φ2(y)
φ1(y) + φ2(y)

Prof. S. Boyd, EE364b, Stanford University 6

primal decomposition, using bisection on y

1 2 3 4 5 6 7 8
10−4

10−3

10−2

10−1

100

k

f
(k

)
−

f
!

Prof. S. Boyd, EE364b, Stanford University 7

Dual decomposition

Step 1: introduce new variables y1, y2

minimize f(x) = f1(x1, y1) + f2(x2, y2)
subject to y1 = y2

• y1, y2 are local versions of complicating variable y

• y1 = y2 is consensus constraint

Prof. S. Boyd, EE364b, Stanford University 8

Step 2: form dual problem

L(x1, y1, x2, y2) = f1(x1, y1) + f2(x2, y2) + νT (y1 − y2)

separable; can minimize over (x1, y1) and (x2, y2) separately

g1(ν) = inf
x1,y1

(

f1(x1, y1) + νTy1
)

= −f∗
1 (0,−ν)

g2(ν) = inf
x2,y2

(

f2(x2, y2)− νTy2
)

= −f∗
2 (0, ν)

dual problem is: maximize g(ν) = g1(ν) + g2(ν)

• computing gi(ν) are the dual subproblems

• can be done in parallel

• a subgradient of −g is y2 − y1 (from solutions of subproblems)

Prof. S. Boyd, EE364b, Stanford University 9

Dual decomposition algorithm

(using subgradient algorithm for master)

repeat
1. Solve the dual subproblems.

Find x1, y1 that minimize f1(x1, y1) + νTy1.
Find x2, y2 that minimize f2(x2, y2)− νTy2.

2. Update dual variables (prices).
ν := ν − αk(y2 − y1).

• step length αk can be chosen in standard ways

• at each step we have a lower bound g(ν) on p!

• iterates are generally infeasible, i.e., y1 $= y2

Prof. S. Boyd, EE364b, Stanford University 10

Finding feasible iterates

• reasonable guess of feasible point from (x1, y1), (x2, y2):

(x1, ȳ), (x2, ȳ), ȳ = (y1 + y2)/2

– projection onto feasible set y1 = y2
– gives upper bound p! ≤ f1(x1, ȳ) + f2(x2, ȳ)

• a better feasible point: replace y1, y2 with ȳ and solve primal
subproblems minimizex1f1(x1, ȳ), minimizex2f2(x2, ȳ)

– gives (better) upper bound p! ≤ φ1(ȳ) + φ2(ȳ)

Prof. S. Boyd, EE364b, Stanford University 11

(Same) example

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

ν

g1(ν)

g2(ν)

g1(ν) + g2(ν)

Prof. S. Boyd, EE364b, Stanford University 12

dual decomposition convergence (using bisection on ν)

0 5 10 15
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

k

better bound
worse bound
g(ν)

Prof. S. Boyd, EE364b, Stanford University 13

Interpretation

• y1 is resources consumed by first unit, y2 is resources generated by
second unit

• y1 = y2 is consistency condition: supply equals demand

• ν is a set of resource prices

• master algorithm adjusts prices at each step, rather than allocating
resources directly (primal decomposition)

Prof. S. Boyd, EE364b, Stanford University 14

Recovering the primal solution from the dual

• iterates in dual decomposition:

ν(k), (x(k)
1 , y(k)1), (x(k)

2 , y(k)2)

– x(k)
1 , y(k)1 is minimizer of f1(x1, y1) + ν(k)Ty1 found in subproblem 1

– x(k)
2 , y(k)2 is minimizer of f2(x2, y2)− ν(k)Ty2 found in subproblem 2

• ν(k) → ν! (i.e., we have price convergence)

• subtlety: we need not have y(k)1 − y(k)2 → 0

• the hammer: if fi strictly convex, we have y(k)1 − y(k)2 → 0

• can fix allocation (i.e., compute φi), or add regularization terms ε‖xi‖2

Prof. S. Boyd, EE364b, Stanford University 15

Decomposition with constraints

can also have complicating constraints, as in

minimize f1(x1) + f2(x2)
subject to x1 ∈ C1, x2 ∈ C2

h1(x1) + h2(x2) (0

• fi, hi, Ci convex

• h1(x1) + h2(x2) (0 is a set of p complicating or coupling constraints,
involving both x1 and x2

• can interpret coupling constraints as limits on resources shared between
two subproblems

Prof. S. Boyd, EE364b, Stanford University 16

Primal decomposition

fix t ∈ Rp and define

subproblem 1:
minimize f1(x1)
subject to x1 ∈ C1, h1(x1) (t

subproblem 2:
minimize f2(x2)
subject to x2 ∈ C2, h2(x2) (−t

• t is the quantity of resources allocated to first subproblem
(−t is allocated to second subproblem)

• master problem: minimize φ1(t) + φ2(t) (optimal values of
subproblems) over t

• subproblems can be solved separately when t is fixed

Prof. S. Boyd, EE364b, Stanford University 17

Primal decomposition algorithm

repeat
1. Solve the subproblems.

Solve subproblem 1, finding x1 and λ1.
Solve subproblem 2, finding x2 and λ2.

2. Update resource allocation.
t := t− αk(λ2 − λ1).

• λi is an optimal Lagrange multiplier associated with resource constraint
in subproblem i

• λ2 − λ1 ∈ ∂(φ1 + φ2)(t)

• αk is an appropriate step size

• all iterates are feasible (when subproblems are feasible)

Prof. S. Boyd, EE364b, Stanford University 18

Example

• x1, x2 ∈ R20, t ∈ R2; fi are quadratic, hi are affine, Ci are polyhedra
defined by 100 inequalities; p! ≈ −1.33; αk = 0.5/k

0 20 40 60 80 100
10−4

10−3

10−2

10−1

100

k

f
(k

)
−

p
!

Prof. S. Boyd, EE364b, Stanford University 19

resource allocation t to first subsystem (second subsystem gets −t)

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k

Prof. S. Boyd, EE364b, Stanford University 20

Dual decomposition

form (separable) partial Lagrangian

L(x1, x2,λ) = f1(x1) + f2(x2) + λT (h1(x1) + h2(x2))

=
(

f1(x1) + λTh1(x1)
)

+
(

f2(x2) + λTh2(x2)
)

fix dual variable λ and define

subproblem 1:
minimize f1(x1) + λTh1(x1)
subject to x1 ∈ C1

subproblem 2:
minimize f2(x2) + λTh2(x2)
subject to x2 ∈ C2

with optimal values g1(λ), g2(λ)

Prof. S. Boyd, EE364b, Stanford University 21

• hi(x̄i) ∈ ∂(−gi)(λ), where x̄i is any solution to subproblem i

• h1(x̄1) + h2(x̄2) ∈ ∂(−g)(λ)

• the master algorithm updates λ using this subgradient

Prof. S. Boyd, EE364b, Stanford University 22

Dual decomposition algorithm

(using projected subgradient method)

repeat
1. Solve the subproblems.

Solve subproblem 1, finding an optimal x̄1.
Solve subproblem 2, finding an optimal x̄2.

2. Update dual variables (prices).
λ := (λ+ αk(h1(x̄1) + h2(x̄2)))+.

• αk is an appropriate step size

• iterates need not be feasible

• can again construct feasible primal variables using projection

Prof. S. Boyd, EE364b, Stanford University 23

Interpretation

• λ gives prices of resources

• subproblems are solved separately, taking income/expense from resource
usage into account

• master algorithm adjusts prices

• prices on over-subscribed resources are increased; prices on
undersubscribed resources are reduced, but never made negative

Prof. S. Boyd, EE364b, Stanford University 24

(Same) example

subgradient method for master; resource prices λ

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k

Prof. S. Boyd, EE364b, Stanford University 25

dual decomposition convergence; f̂ is objective of projected feasible
allocation

0 5 10 15 20 25 30
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

k

g

f̂

Prof. S. Boyd, EE364b, Stanford University 26

0 5 10 15 20 25 30

10−4

10−3

10−2

10−1

100

101

k

p! − g(λ)

f̂ − g(λ)

Prof. S. Boyd, EE364b, Stanford University 27

General decomposition structures

• multiple subsystems

• (variable and/or constraint) coupling constraints between subsets of
subsystems

• represent as hypergraph with subsystems as vertices, coupling as
hyperedges or nets

• without loss of generality, can assume all coupling is via consistency
constraints

Prof. S. Boyd, EE364b, Stanford University 28

Simple example

1 2 3

• 3 subsystems, with private variables x1, x2, x3, and public variables y1,
(y2, y3), and y4

• 2 (simple) edges

minimize f1(x1, y1) + f2(x2, y2, y3) + f3(x3, y4)
subject to (x1, y1) ∈ C1, (x2, y2, y3) ∈ C2, (x3, y4) ∈ C3

y1 = y2, y3 = y4

Prof. S. Boyd, EE364b, Stanford University 29

A more complex example

1 2

3 4 5

c1

c2

c3 c4

Prof. S. Boyd, EE364b, Stanford University 30

General form

minimize
∑K

i=1 fi(xi, yi)
subject to (xi, yi) ∈ Ci, i = 1, . . . , K

yi = Eiz, i = 1, . . . ,K

• private variables xi, public variables yi

• net (hyperedge) variables z ∈ RN ; zi is common value of public
variables in net i

• matrices Ei give netlist or hypergraph
row k is ep, where kth entry of yi is in net p

Prof. S. Boyd, EE364b, Stanford University 31

Primal decomposition

φi(yi) is optimal value of subproblem

minimize fi(xi, yi)
subject to (xi, yi) ∈ Ci

repeat

1. Distribute net variables to subsystems.
yi := Eiz, i = 1, . . . , K.

2. Optimize subsystems (separately).
Solve subproblems to find optimal xi, gi ∈ ∂φi(yi), i = 1, . . . , K.

3. Collect and sum subgradients for each net.

g :=
∑K

i=1E
T
i gi.

4. Update net variables.
z := z − αkg.

Prof. S. Boyd, EE364b, Stanford University 32

Dual decomposition

gi(νi) is optimal value of subproblem

minimize fi(xi, yi) + νTi yi
subject to (xi, yi) ∈ Ci

given initial price vector ν that satisfies ETν = 0 (e.g., ν = 0).

repeat

1. Optimize subsystems (separately).
Solve subproblems to obtain xi, yi.

2. Compute average value of public variables over each net.
ẑ := (ETE)−1ETy.

3. Update prices on public variables.
ν := ν + αk(y − Eẑ).

Prof. S. Boyd, EE364b, Stanford University 33

A more complex example

subsystems: quadratic plus PWL objective with 10 private variables;
9 public variables and 4 nets; p! ≈ 11.1; α = 0.5

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

k

g(ν)

f(x̂, ŷ)
f(x, ŷ)

Prof. S. Boyd, EE364b, Stanford University 34

consistency constraint residual ‖y − Eẑ‖ versus iteration number

0 2 4 6 8 10
10−4

10−3

10−2

10−1

100

101

k

‖
y
−

E
ẑ
‖

Prof. S. Boyd, EE364b, Stanford University 35

	subgradients_slides
	subgrad_method_slides
	constr_subgrad_slides
	decomposition_slides

