Ottimizzazione Convessa

Le slide di questa parte del corso sono parte delle slide del corso del Prof. Stephen Boyd della Standford University. Sul sito del Professor Boyd sono a disposizione:

- Il file pdf del libro "Convex Optimization" di Stephen Boyd e Lieven Vandenberghe, Cambridge University Press (http://www.stanford.edu/ boyd/cvxbook/)
- Le slide del corso "EE364a: Convex Optimization I" (http://www.stanford.edu/class/ee364a/lectures.html)
- I Video delle lezioni

Mathematical optimization

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: constraint functions

optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints

Solving optimization problems

general optimization problem

- very difficult to solve
- methods involve some compromise, *e.g.*, very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if $\alpha + \beta = 1$, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

- find a point that minimizes f_0 among feasible points near it
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

Introduction

Brief history of convex optimization

theory (convex analysis): ca1900–1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco & McCormick, Dikin, ...)
- 1970s: ellipsoid method and other subgradient methods
- 1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)
- late 1980s-now: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov & Nemirovski 1994)

applications

- before 1990: mostly in operations research; few in engineering
- since 1990: many new applications in engineering (control, signal processing, communications, circuit design, . . .); new problem classes (semidefinite and second-order cone programming, robust optimization)

Convex Optimization — Boyd & Vandenberghe

2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine set

line through x_1 , x_2 : all points

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_1 and x_2 : all points

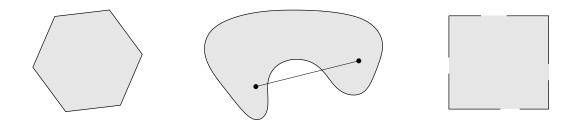
$$x = \theta x_1 + (1 - \theta) x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

examples (one convex, two nonconvex sets)



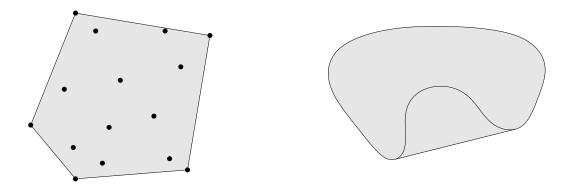
Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

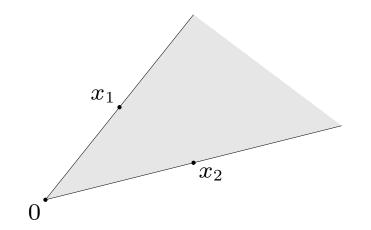


Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

 $x = \theta_1 x_1 + \theta_2 x_2$

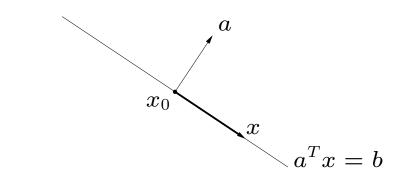
with $\theta_1 \ge 0$, $\theta_2 \ge 0$



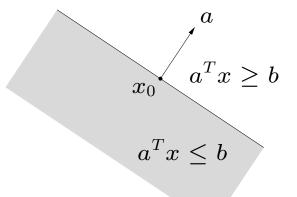
convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$



halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$



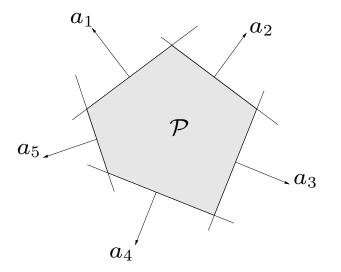
- *a* is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq \text{ is componentwise inequality})$



polyhedron is intersection of finite number of halfspaces and hyperplanes

Operations that preserve convexity

practical methods for establishing convexity of a set ${\cal C}$

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

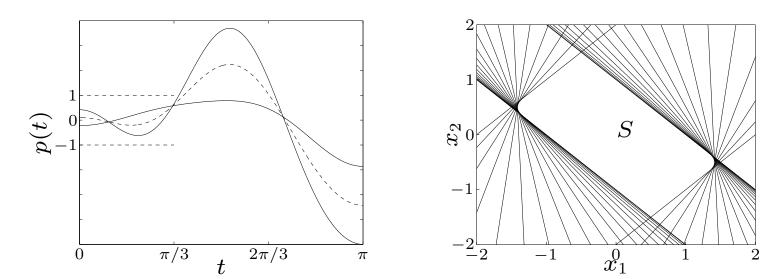
the intersection of (any number of) convex sets is convex

example:

$$S = \{ x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m = 2:



Affine function

suppose $f : \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

• the image of a convex set under f is convex

 $S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$

• the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ convex}$$

examples

- scaling, translation, projection
- solution set of linear matrix inequality {x | x₁A₁ + · · · + x_mA_m ≤ B} (with A_i, B ∈ S^p)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

Perspective and linear-fractional function

perspective function $P : \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

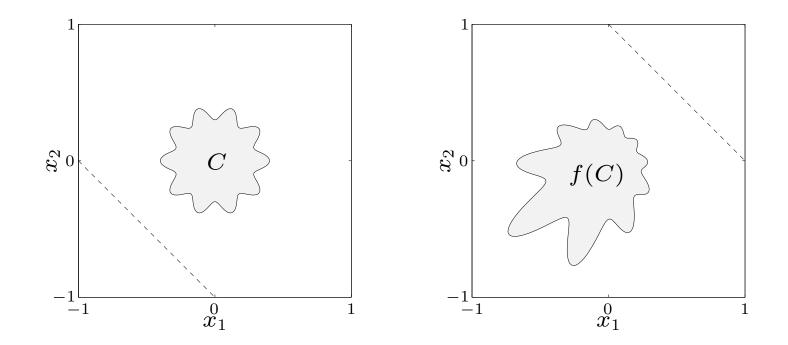
linear-fractional function $f : \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax+b}{c^T x+d}, \quad \text{dom} f = \{x \mid c^T x+d > 0\}$$

images and inverse images of convex sets under linear-fractional functions are convex

example of a linear-fractional function

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$



Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x_i \ge 0, i = 1, \dots, n\}$
- positive semidefinite cone $K = \mathbf{S}^n_+$
- nonnegative polynomials on [0,1]:

$$K = \{ x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$$

generalized inequality defined by a proper cone K:

$$x \preceq_K y \quad \Longleftrightarrow \quad y - x \in K, \qquad x \prec_K y \quad \Longleftrightarrow \quad y - x \in \operatorname{int} K$$

examples

• componentwise inequality $(K = \mathbf{R}^n_+)$

$$x \preceq_{\mathbf{R}^n_+} y \quad \iff \quad x_i \le y_i, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq_{\mathbf{S}^n_+} Y \iff Y - X$$
 positive semidefinite

these two types are so common that we drop the subscript in \preceq_K **properties:** many properties of \preceq_K are similar to \leq on **R**, *e.g.*,

$$x \preceq_K y, \quad u \preceq_K v \implies x + u \preceq_K y + v$$

Minimum and minimal elements

 \preceq_K is not in general a *linear ordering*: we can have $x \not\preceq_K y$ and $y \not\preceq_K x$ $x \in S$ is **the minimum element** of S with respect to \preceq_K if

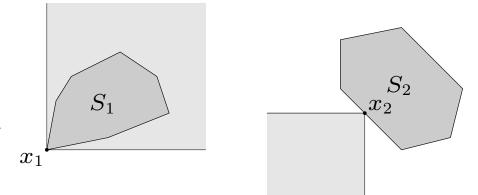
$$y \in S \implies x \preceq_K y$$

 $x \in S$ is a minimal element of S with respect to \leq_K if

$$y \in S, \quad y \preceq_K x \implies y = x$$

example $(K = \mathbf{R}^2_+)$

 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2



Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that

 $a^{T}x \leq b \text{ for } x \in C, \qquad a^{T}x \geq b \text{ for } x \in D$ $a^{T}x \geq b \qquad a^{T}x \leq b$ $D \qquad C$ $a \qquad C$

the hyperplane $\{x \mid a^T x = b\}$ separates C and D

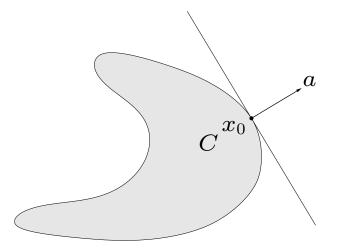
strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$



supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual cones and generalized inequalities

dual cone of a cone *K*:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

- $K = \mathbf{R}^n_+$: $K^* = \mathbf{R}^n_+$
- $K = \mathbf{S}_+^n$: $K^* = \mathbf{S}_+^n$
- $K = \{(x,t) \mid ||x||_2 \le t\}$: $K^* = \{(x,t) \mid ||x||_2 \le t\}$
- $K = \{(x,t) \mid ||x||_1 \le t\}$: $K^* = \{(x,t) \mid ||x||_\infty \le t\}$

first three examples are self-dual cones

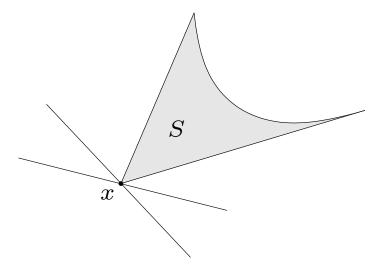
dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

Minimum and minimal elements via dual inequalities

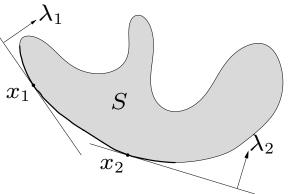
minimum element w.r.t. \preceq_K

x is minimum element of S iff for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over S



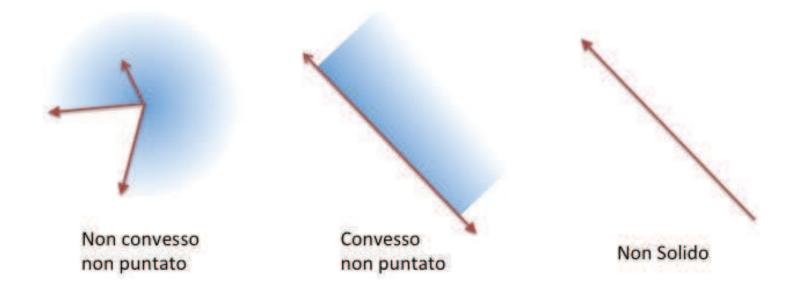
minimal element w.r.t. \preceq_K

• if x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^*} 0$, then x is minimal



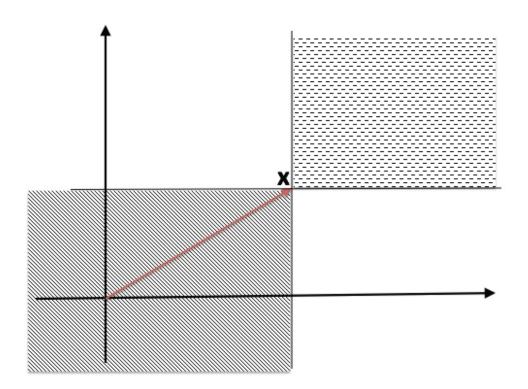
• if x is a minimal element of a *convex* set S, then there exists a nonzero $\lambda \succeq_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

Un cono è un insieme C di punti x per cui $\lambda x \in C$ per ogni $\lambda \in \mathbb{R}_+$. Esempi di coni non propri:



Diseguaglianza generalizzata indotta dal con
o $K=\mathbb{R}^n_+$ dell'ortante non negativo

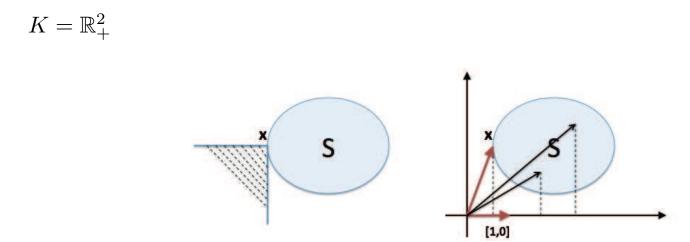
In figura sono rappresentati i vettori confrontabili con x che sono più grandi (zona tratteggiata) e quelli che sono confrontabili con x e sono più piccoli (zona rigata). Le zone non evidenziate sono di vettori non confontabili con x per il cono scelto.



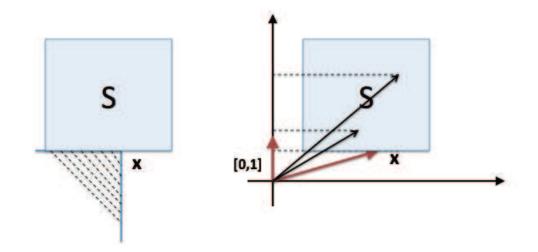
Iperpiano di supporto, cono duale ed elemento minimo

Il legame che c'è tra questi tre concetti è che se x è un minimo di S equivale a dire che esiste un λ che appartiene al cono duale e quindi il vettore $-\lambda$ è la direzione di un iperpiano di supporto ad S in x.

Infatti se x è minimo per S allora esiste $\lambda \in K^*$ per cui $\lambda^T y \ge \lambda^T x$ per ogni $y \in S$. Per la definizione di cono duale si ha $\lambda^T x \ge 0$ e quindi $-\lambda^T y \le -\lambda^T x \le 0$ per ogni $y \in S$. Per definizione $-\lambda$ individua la direzione di un iperpiano di supporto ad S in x.



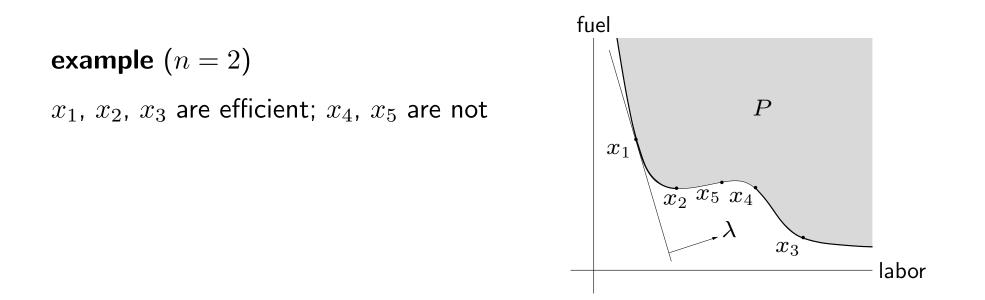
Esempio di elemento minimale che non è minimizzatore per ogni $\lambda \succ_{K^*} 0$ nonostante esista un $\lambda = (1, 0)^T$ lungo la cui direzione x è il minimizzatore. Ni noti però che $\lambda = (1, 0)^T$ appartiene al bordo del cono duale (che coincide con K).



Esempio di un elemento che non è minimale (esistono vettori più piccoli) che è un minimizzatore (non unico!) per $\lambda = (0, 1)^T$ anch'esso appartenente al bordo del cono duale.

optimal production frontier

- different production methods use different amounts of resources $x \in \mathbf{R}^n$
- production set P: resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. Rⁿ₊



Convex Optimization — Boyd & Vandenberghe

3. Convex functions

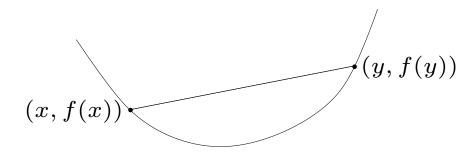
- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities

Definition

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$



- f is concave if -f is convex
- f is strictly convex if $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{\mathbf{dom}} f$, $x \neq y$, $0 < \theta < 1$

Examples on R

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbb{R}^n and \mathbb{R}^{m \times n}

affine functions are convex and concave; all norms are convex

examples on R^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

• affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Restriction of a convex function to a line

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \to \mathbf{R}$,

$$g(t) = f(x + tv), \qquad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

is convex (in t) for any $x \in \operatorname{\mathbf{dom}} f$, $v \in \mathbf{R}^n$

can check convexity of f by checking convexity of functions of one variable example. $f : \mathbf{S}^n \to \mathbf{R}$ with $f(X) = \log \det X$, $\operatorname{dom} f = \mathbf{S}_{++}^n$

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$

= $\log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$

g is concave in t (for any choice of $X \succ 0$, V); hence f is concave

Convex functions

Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \operatorname{dom} f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \quad \Longrightarrow \quad \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbf{R} \cup \{\infty\}$), means the same as the two conditions

- $\mathbf{dom} f$ is convex
- for $x, y \in \operatorname{\mathbf{dom}} f$,

$$0 \le \theta \le 1 \quad \Longrightarrow \quad f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

First-order condition

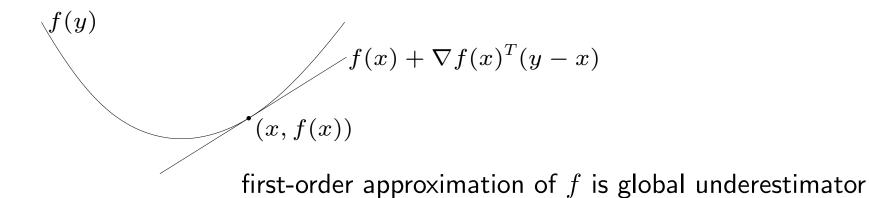
f is differentiable if $\operatorname{\mathbf{dom}} f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{dom} f$



Second-order conditions

f is twice differentiable if dom f is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{\mathbf{dom}} f$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{\mathbf{dom}} f$, then f is strictly convex

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if $P \succeq 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$

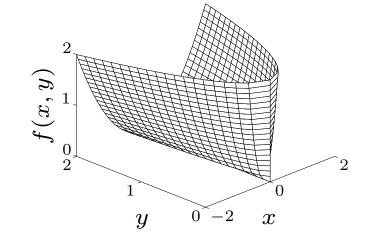
$$\nabla f(x) = 2A^T (Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0



Convex functions

log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \qquad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \ge 0$ for all v:

$$v^T \nabla^2 f(x) v = \frac{(\sum_k z_k v_k^2) (\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \ge 0$$

since $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2) (\sum_k z_k)$ (from Cauchy-Schwarz inequality)

geometric mean: $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$ on \mathbb{R}^n_{++} is concave (similar proof as for log-sum-exp)

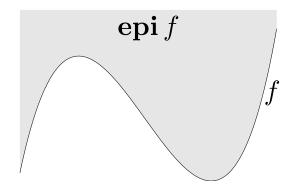
Epigraph and sublevel set

 α -sublevel set of $f : \mathbf{R}^n \to \mathbf{R}$:

$$C_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f : \mathbb{R}^n \to \mathbb{R}$:

$$\mathbf{epi}\,f = \{(x,t) \in \mathbf{R}^{n+1} \mid x \in \mathbf{dom}\,f, \ f(x) \le t\}$$



f is convex if and only if $\operatorname{\mathbf{epi}} f$ is a convex set

Convex functions

Jensen's inequality

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

 $f(\mathbf{E}\,z) \le \mathbf{E}\,f(z)$

for any random variable z

basic inequality is special case with discrete distribution

$$\operatorname{prob}(z=x) = \theta, \quad \operatorname{prob}(z=y) = 1 - \theta$$

Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals) composition with affine function: f(Ax + b) is convex if f is convex

examples

• log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m}(a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]}$ is *i*th largest component of x) proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

if f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

examples

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

• maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

Composition with scalar functions

composition of $g : \mathbf{R}^n \to \mathbf{R}$ and $h : \mathbf{R} \to \mathbf{R}$:

$$f(x) = h(g(x))$$

f is convex if $\begin{array}{c}g \text{ convex, }h \text{ convex, }\tilde{h} \text{ nondecreasing}\\g \text{ concave, }h \text{ convex, }\tilde{h} \text{ nonincreasing}\end{array}$

• proof (for
$$n = 1$$
, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g : \mathbf{R}^n \to \mathbf{R}^k$ and $h : \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $\begin{array}{c} g_i \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing in each argument} \\ g_i \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing in each argument} \end{array}$

proof (for n = 1, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

•
$$f(x,y) = x^T A x + 2x^T B y + y^T C y$$
 with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, \qquad C \succ 0$$

minimizing over y gives $g(x) = \inf_y f(x,y) = x^T (A - BC^{-1}B^T) x$

g is convex, hence Schur complement $A - BC^{-1}B^T \succeq 0$

• distance to a set: $\operatorname{dist}(x, S) = \inf_{y \in S} ||x - y||$ is convex if S is convex

Perspective

the **perspective** of a function $f : \mathbf{R}^n \to \mathbf{R}$ is the function $g : \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$,

$$g(x,t) = tf(x/t), \quad \text{dom } g = \{(x,t) \mid x/t \in \text{dom } f, t > 0\}$$

g is convex if f is convex

examples

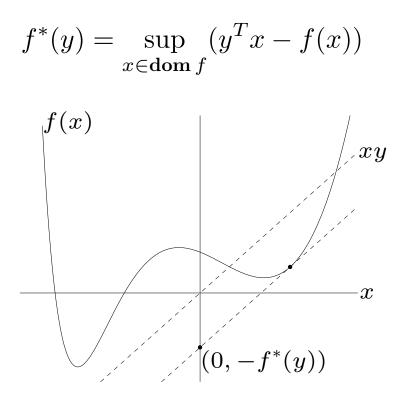
- $f(x) = x^T x$ is convex; hence $g(x,t) = x^T x/t$ is convex for t > 0
- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x,t) = t\log t t\log x$ is convex on \mathbf{R}^2_{++}
- if f is convex, then

$$g(x) = (c^T x + d) f\left((Ax + b) / (c^T x + d) \right)$$

is convex on $\{x \mid c^T x + d > 0, \ (Ax + b)/(c^T x + d) \in \operatorname{\mathbf{dom}} f\}$

The conjugate function

the **conjugate** of a function f is



- f^* is convex (even if f is not)
- will be useful in chapter 5

examples

• negative logarithm $f(x) = -\log x$

$$f^{*}(y) = \sup_{x>0} (xy + \log x)$$
$$= \begin{cases} -1 - \log(-y) & y < 0\\ \infty & \text{otherwise} \end{cases}$$

• strictly convex quadratic $f(x) = (1/2) x^T Q x$ with $Q \in \mathbf{S}_{++}^n$

$$f^{*}(y) = \sup_{x} (y^{T}x - (1/2)x^{T}Qx)$$
$$= \frac{1}{2}y^{T}Q^{-1}y$$