Course on Model Predictive Control Part IV – Nonlinear Model Predictive Control and Moving Horizon Estimation

Gabriele Pannocchia

Department of Chemical Engineering, University of Pisa, Italy Email: g.pannocchia@diccism.unipi.it

Università di Pisa. September 24th, 2012. Aula Pacinotti

Outline

Nonlinear Model Predictive Control: basics

- General formulation and stability requirements
- Examples of nonlinear MPC formulations
- Suboptimal nonlinear MPC
- Offset-free nonlinear MPC
- Nonlinear Model Predictive Control: robustness
 - Inherent robustness
 - Robust tube-based nonlinear MPC

Moving horizon estimation

- Introduction and full information estimator
- Linear state estimation as an optimal control problem
- Moving horizon estimation
- Including constraints in the estimator

NMPC: dynamics, constraints and cost function

Nonlinear models

• Often nonlinear models are available in continuous time:

$$\dot{x} = f(x, u)$$
$$y = h(x, u)$$

• For **nonlinear MPC** design, we need a **discrete-time** model:

x(k+1) = F(x(k), u(k))y(k) = h(x(k), u(k))

- Notice that: $F(x(k), u(k)) = x(k) + \int_{t_k}^{t_{k+1}} f(x, u) dt$
- For **simplicity**, we use the **notation**: $x^+ = f(x, u)$

Constraints and cost function

- **State and input** constraints: $x(k) \in X$, $u(k) \in U$
- Stage cost and overall cost: $V_N(x, \mathbf{u}) = \sum_{j=0}^{N-1} \ell(x(j), u(j)) + V_f(x(N))$

MPC: optimal control problem and assumptions

Main assumptions

- $\ell(\cdot)$ and $V_f(\cdot)$ are **positive definite**, and $\ell(0,0) = 0$, $V_f(0) = 0$ $f(\cdot)$ is **continuous** and f(0,0) = 0
- **Control-invariant set** $X_f \subseteq X$: For any $x \in X_f$, there exists $u \in \mathbb{U}$ such that: $V_f(f(x, u)) V_f(x) \le -\ell(x, u)$

Optimal control problem

Given the **current state** *x*, solve:

$$\mathbb{P}_{N}(x): \min_{\mathbf{u}} V_{N}(x, \mathbf{u}) \quad \text{s.t.}$$

$$x^{+} = f(x, u)$$

$$x(j) \in \mathbb{X} \quad \text{for all } j = 0, \dots, N-1$$

$$u(j) \in \mathbb{U} \quad \text{for all } j = 0, \dots, N-1$$

$$x(N) \in \mathbb{X}_{f}$$

NMPC: a note on computational aspects

General aspects

- The OCP is a non-convex, nonlinear program:
 - ► Computing *f*(*x*, *u*) requires **ODE integration**
 - Finding global optimum is difficult
 - Solution algorithms are time consuming

Efficient NMPC methods [Diehl et al., 2008]

- Problem formulation aspects:
 - Sequential: eliminate the state sequence and solve for u
 - Simultaneous: solve for both state and input sequences (multiple shooting, collocation methods, etc.)
- NLP methods:
 - Sequential Quadratic Programming: repeated linearization of constraints and quadratic expansion of the cost function
 - Interior Point Methods: direct solution of the (slightly modified) nonlinear optimality KKT conditions

NMPC: stability analysis

Lemma. Optimal cost decrease

Let $\kappa_N(x)$ denote the first element of the optimal control sequence $\mathbf{u}^0(x)$. For all $x \in \mathcal{X}_N$, there holds: $V_N^0(f(x, \kappa_N(x)) - V_N^0(x) \le -\ell(x, \kappa_N(x)))$

Proof

- Consider the **optimal input and state sequences** $\mathbf{u}^{0}(x) = \{u^{0}(0; x), ..., u^{0}(N-1; x)\}, \mathbf{x}^{0}(x) = \{x^{0}(0), ..., x^{0}(N)\}$
- At next time, given $x^+ = f(x, \kappa_N(x))$, consider a candidate sequence $\tilde{\mathbf{u}} := \{u^0(1; x), \dots, u^0(N-1; x), u(N)\}$
- Choose $u(N) \in \mathbb{U}$ such that $x(N+1) = f(x^0(N; x), u(N)) \in \mathbb{X}_f$ and $V_f(x(N+1)) + \ell(x(N), u(N)) \le V_f(x^0(N))$
- $\tilde{\mathbf{u}}$ is **feasible** and $V_N(x^+, \tilde{\mathbf{u}}) \le V_N^0(x) \ell(x, \kappa_N(x))$
- But **not optimal** for $\mathbb{P}_N(x^+)$. Thus:

 $V_N^0(\boldsymbol{x}^+) \leq V_N(\boldsymbol{x}^+, \tilde{\boldsymbol{u}}) \leq V_N^0(\boldsymbol{x}) - \ell(\boldsymbol{x}, \kappa_N(\boldsymbol{x}))$

NMPC: examples of different terminal constraints/costs

The earliest stable formulations [Mayne and Michalska, 1990, Michalska and Mayne, 1993]

- Terminal constraint "set" is the origin
 - (No) **Terminal cost**: $V_f(x) = 0$
 - **Terminal set**: $X_f = \{0\}$
- **Dual-mode** formulation:
 - Preliminary operations ((A, B), linearized system matrices)
 - ★ Choose any K s.t. $A_K = A + BK$ is stable
 - ★ Set $Q^* = Q + K'RK$ and solve $P = A'_K PA_K + 2Q^*$.
 - ★ Define $X_f = \{x \in \mathbb{R}^n \mid x' Px \le \alpha \text{ is invariant for } x^+ = f(x, Kx)$
 - Mode 1: if $x \notin X_f$ solve $\mathbb{P}_N(x)$ with $V_f = 0$
 - Mode 2: if $x \in X_f$ use u = Kx

Quasi-infinite horizon [Chen and Allgower, 1998]

- Terminal **cost**: $V_f(x) = x' P x$
- Terminal set: $X_f = \{x \in \mathbb{R}^n \mid x' Px \le \alpha\}$, invariant for $x^+ = f(x, Kx)$

NMPC: omitting the terminal constraint

Is a terminal constraint set necessary?

- The addition of $V_f(\cdot)$ does not affect materially the OCP
- The addition of $x(N) \in X_f$ does
- Is there an implicit way of enforcing the constraint?

Inflating the terminal penalty [Limon et al., 2006]

- Basic idea: increase $V_f(\cdot)$ enough to make $x(N) \in X_f$ inherently satisfied
- Modified cost function, given $\beta > 1$

$$V_N^{\beta}(x, \mathbf{u}) = \sum_{j=0}^{N-1} \ell(x(j), u(j)) + \beta V_f(x(N))$$

• Let $\mathscr{X}_N = \{x \in \mathbb{R}^n \mid V_N^0(x) \le \overline{V}\}$ and $\mathbb{X}_f = \{x \in \mathbb{R}^n \mid x' P x \le \alpha\}$. **Choose any** $\beta \ge \overline{V}/\alpha$

Suboptimal nonlinear MPC

A neat suboptimal MPC framework [Scokaert et al., 1999]

- Given current state x, previous control sequence $\mathbf{u}^- = \{u^-(0), u^-(1), \dots, u^-(N-1)\}$ and state sequence $\mathbf{x}^- = \{x^-(0), x^-(1), \dots, x^-(N)\}$
- Build a warm-start: $\mathbf{u}_0 = \{u^-(1), \dots, u^-(N-1), \kappa_f(x^-(N))\}$
- Perform some iterations to improve the warm start: $V_N(x, \mathbf{u}) \leq V_N(x, \mathbf{u}_0)$

Take home message

- Stability holds for suboptimal MPC
- It is always a good idea to warm start nonlinear MPC solvers

Offset-free nonlinear MPC design

Augmented nonlinear system [Morari and Maeder, 2012]

• As in the linear case, **augment** the nominal system with **integrating disturbances**

$$x^{+} = f_{aug}(x, u, d)$$
$$d^{+} = d$$

 $y = h_{aug}(x, u, d)$

• **Estimate** both (*x*, *d*) given the measurement of *y*

Target problem and deviation variables

• Given \hat{d} solve a **target problem** to obtain (x_s, u_s)

$$x_s = f_{aug}(x_s, u_s, \hat{d}), \quad u_s \in \mathbb{U}, \quad x_s \in \mathbb{X}$$

• Deviation variables, $\tilde{x} = x - x_s$, $\tilde{u} = u - u_s$, are regulated to zero

Inherent robustness of nonlinear MPC

A non-robust MPC design [Grimm et al., 2004]

• System:
$$x^+ = \begin{bmatrix} x_1(1-u) \\ |x|u \end{bmatrix} = f(x, u)$$

• Input constraints: $\mathbb{U} = [0, 1]$

• MPC design:
$$N = 2$$
, $X_f = \{0\}$, $V_f = 0$

• The origin is AS, but stability has no robustness

Sufficient conditions for robust nominal stability

- Sufficiently long prediction horizon [Grimm et al., 2007]
- **Continuity** of the feasibility region [Pannocchia et al., 2011] $\mathscr{U}_N(x) = \{ \mathbf{u} \in \mathbb{U}^N \mid \phi(k; x, \mathbf{u}) \in \mathbb{X}, k \in \mathbb{I}_{0:N-1}, \phi(N; x, \mathbf{u}) \in \mathbb{X}_f \}$
- The above **condition** provides **robustness** also to **suboptimal nonlinear MPC** [Pannocchia et al., 2011]

Robust tube-based nonlinear MPC

Same framework as in linear robust MPC [Rawlings and Mayne, 2009]

- **Uncertain nonlinear system**: $x^+ = f(x, u) + w, w \in \mathbb{W}$
- Nominal system: $z^+ = f(z, v)$
- **Central path** $\mathbb{Z} \subset \mathbb{X}$ and $\mathbb{V} \subset \mathbb{U}$:

$$\begin{split} \bar{\mathbb{P}}_N(z) : & \min_{\mathbf{v}} V_N(z,\mathbf{v}) \quad \text{s.t.} \quad z^+ = f(z,v) \\ z(j) \in \mathbb{Z} & \text{for all } j = 0, \dots, N-1 \\ v(j) \in \mathbb{V} & \text{for all } j = 0, \dots, N-1 \\ z(N) \in \mathbb{Z}_f \end{split}$$

leading to (an implicit) **nominal control**: $\bar{\kappa}_N(z) = v^0(z; x)$

• **Ancillary controller** (replace u = v + K(x - z))

 $\mathbb{P}_{N}(x,z): \qquad \min_{\mathbf{v}} V_{N}(x,z,\mathbf{v}) = \sum_{i=0}^{N-1} \ell(x(i) - z^{0}(i), u(i) - v^{0}(i)) \qquad \text{s.t.}$ $x^{+} = f(x,u), \quad u(i) \in \mathbb{U}, \quad x(N) = z^{0}(N)$

The full information estimation problem

Three sets of variables

	System variable	Decision variable	Optimal decision
state	x	X	â
process disturbance	w	ω	ŵ
measurement output	у	η	ŷ
measurement disturbance	ν	ν	Û

Full information objective function

- **True system** evolves as: $x^+ = f(x, w)$ y = h(x) + v
- Given measurements $\{y(0), y(1), \dots, y(T-1)\}$, cost function is:

$$V_T(\chi(0), \omega) = \ell_x(\chi(0) - \bar{x}_0) + \sum_{i=0}^{T-1} \ell_i(\omega(i), v(i))$$

s.t. $\chi^+ = f(\chi, \omega), \quad y = h(\chi) + v$

Stability of full information estimator

Optimal full information estimator

• It is the **solution** of

 $\min_{\chi(0),\boldsymbol{\omega}} V_T(\chi(0),\boldsymbol{\omega})$

• We **denote** the solution as: $\hat{x}(0|T)$, $\hat{w}(i|T)$ for i = 0, ..., T - 1

Global asymptotic stability (GAS)

Definition: Consider the **noise-free case**, i.e. w(k) = 0, v(k) = 0for all $k \ge 0$, the estimate is **nominally globally asymptotically stable** if there exists a \mathcal{KL} function $\beta(\cdot)$ such that for all (x_0, \bar{x}_0) there holds

 $|x(k; x_0) - \hat{x}(k)| \le \beta(|x_0 - \bar{x}_0|, k)$ for all $k \ge 0$

Result: The estimate obtained from the full information estimator is GAS

Robust stability of full information estimator

Robust global asymptotic stability (RGAS)

Consider the **noisy case**. The estimate is **robustly** GAS if for all (x_0, \bar{x}_0) and (\mathbf{w}, \mathbf{v}) **convergent**, there exist a \mathcal{KL} function $\beta(\cdot)$ and \mathcal{K} functions $\gamma_w(\cdot)$ and $\gamma_v(\cdot)$ such that for all $k \ge 0$:

 $|x(k;x_0) - \hat{x}(k)| \le \beta(|x_0 - \bar{x}_0|, k) + \gamma_w(\|\mathbf{w}\|) + \gamma_v(\|\mathbf{v}\|)$

where $\|\mathbf{w}\| = \sup_{k \ge 0} |w(k)|, \|\mathbf{v}\| = \sup_{k \ge 0} |v(k)|$

One current limitation

- **Stability** proofs for MHE assume that (\mathbf{w}, \mathbf{v}) are **convergent**, i.e. $|w(k)| \le \alpha(||\mathbf{w}||, k)$
- Some recent work [Rawlings and Ji, 2012] **conjectures** that **robust GAS** will hold for simply **bounded** disturbances

Linear state estimation as an optimal control problem

Linear state estimation problem

• True system:

$$x^+ = Ax + Gw$$

$$y = Cx + v$$

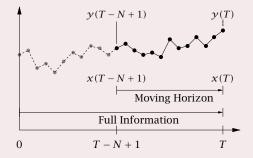
• Full information estimator solves

$$\min_{\chi(0),\mathbf{w}} V_T(\chi(0),\mathbf{w}) = |\chi(0) - \bar{x}(0)|_{P(0)^{-1}}^2 + \sum_{i=0}^{T-1} |\omega(i)|_{Q^{-1}}^2 + |\nu(i)|_{R^{-1}}^2$$

s.t. $\chi^+ = A\chi + G\omega, \quad \gamma = C\chi + \nu$

Moving horizon estimator: introduction

Moving Horizon Estimation: idea and motivation



- At each new measurement, the size of the full information estimation problem increases
- In MHE, the optimal estimation problem has fixed length N
- In this way, the **solution time** is bounded

Moving horizon estimator: definitions

General definition

- Given a **prior weighting**, positive definite, function $\Gamma_{T-N}(\cdot)$
- The MHE objective function is

$$\hat{V}_T(\chi(T-N),\omega) = \Gamma_{T-N}(\chi(T-N)) + \sum_{i=T-N}^{T-1} \ell_i(\omega(i), \nu(i))$$

s.t. $\chi^+ = A\chi + G\omega, \quad y = C\chi + \nu$

• MHE solves a fixed and finite horizon problem:

$$\min_{\chi(T-N),\omega} \hat{V}_T(\chi(T-N),\omega)$$

For k ≤ N, MHE is defined as the same as full information estimator

The arrival cost

- The term $\Gamma_{T-N}(\chi(T-N))$ is called **arrival cost**
- It takes into account the past terms

MHE arrival cost

Zero prior weighting

- One **possible choice** is $\Gamma_{T-N}(p) = 0$
- Robust GAS of MHE can be shown for this choice
- However, a large *N* is required to obtain similar performance as the full-information estimator

Exact arrival cost

• An alternative choice would be to use the **exact arrival cost** of the full-information estimator

$$Z_{T-N}(p) = \min_{\chi(0),\omega} V_{T-N}(\chi(0),\omega) \quad \text{s.t.}$$

$$f(\chi,\omega), \quad y = h(\chi) + \nu, \quad \chi(T-N) = p$$

• With $\Gamma_{T-N}(\cdot) = Z_{T-N}(\cdot)$, MHE is **identical** to the full-information estimator

Constrained estimation

Constrained full information estimator

• The constrained full information estimator solves:

$$\min_{\chi(0),\mathbf{w}} V_T(\chi(0),\mathbf{w}) = \ell_x(\chi(0) - \bar{x}_0) + \sum_{i=0}^{T-1} \ell_i(\omega(i), v(i))$$

s.t. $\chi^+ = f(\chi, \omega), \quad y = h(\chi) + v$
 $\omega(i) \in \mathbb{W}, \quad v(i) \in \mathbb{V}, \quad \chi(i) \in \mathbb{X}$

20 / 22

Constrained MHE

• The constrained MHE solves:

$$\min_{\boldsymbol{\chi}(T-N),\mathbf{w}} \hat{V}_T(\boldsymbol{\chi}(T-N),\mathbf{w}) = \Gamma_{T-N}(\boldsymbol{\chi}(T-N)) + \sum_{i=T-N}^{T-1} \ell_i(\boldsymbol{\omega}(i),\boldsymbol{\nu}(i))$$

s.t. $\boldsymbol{\chi}^+ = f(\boldsymbol{\chi},\boldsymbol{\omega}), \quad \boldsymbol{y} = h(\boldsymbol{\chi}) + \boldsymbol{\nu}$
 $\boldsymbol{\omega}(i) \in \mathbb{W}, \quad \boldsymbol{\nu}(i) \in \mathbb{V}, \quad \boldsymbol{\chi}(i) \in \mathbb{X}$

References I

- H. Chen and F. Allgower. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. *Automatica*, 34(10):1205–1217, 1998.
- M. Diehl, H. J. Ferreau, and N. Haverbeke. Efficient numerical methods for nonlinear MPC and moving horizon estimation. In *Proceedings of the International Workshop on Assessment and Future Directions of NMPC*, Pavia, Italy, September 2008.
- G. Grimm, M. J. Messina, S. E. Tuna, and A. R. Teel. Examples when nonlinear model predictive control is nonrobust. *Automatica*, 40:1729–1738, 2004.
- G. Grimm, M. J. Messina, S. E. Tuna, and A. R. Teel. Nominally robust model predictive control with state constraints. *IEEE Trans. Auto. Contr.*, 52(10):1856–1870, 2007.
- D. Limon, T. Alamo, F. Salas, and E. F. Camacho. On the stability of constrained mpc without terminal constraint. *IEEE Trans. Auto. Contr.*, 51(9):832–836, 2006.
- D. Q. Mayne and H. Michalska. Receding horizon control of non-linear systems. *IEEE Trans. Auto. Contr.*, 35:814–824, 1990.
- H. Michalska and D. Q. Mayne. Robust receding horizon control of constrained nonlinear systems. *IEEE Trans. Auto. Contr.*, 38:1623–1633, 1993.
- M. Morari and U. Maeder. Nonlinear offset-free model predictive control. *Automatica*, 48:2059–2067, 2012.
- G. Pannocchia, J. B. Rawlings, and S. J. Wright. Conditions under which suboptimal nonlinear MPC is inherently robust. *Syst. Contr. Lett.*, 60:747–755, 2011.

References II

- J. B. Rawlings and L. Ji. Optimization-based state estimation: Current status and some new results. J. Proc. Contr., 22:1439–1444, 2012.
- J. B. Rawlings and D. Q. Mayne. *Model Predictive Control: Theory and Design*. Nob Hill Publishing, Madison, WI, 2009.
- P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings. Suboptimal model predictive control (feasibility implies stability). *IEEE Trans. Auto. Contr.*, 44:648–654, 1999.