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Some preliminary definitions

Discrete-time system

Consider general nonlinear discrete-time systems:

x+ = f (x,u)

with f :Rn ×Rm →Rn continuous

Let φ(k; x,u) be the solution of x+ = f (x,u) at time k for
initial state x(0) = x and control sequence u = {u(0), u(1), . . .}

Given a state-feedback law u = κ(x), obtain a closed-loop

x+ = f (x,κ(x)) denote again the solution as φ(k; x)

Equilibrium and positive invariance

A point x∗ is an equilibrium point of x+ = f (x,κ(x)) if
x(0) = x∗ implies that x(k) =φ(k; x∗) = x∗ for all k ≥ 0

A set A is positively invariant for x+ = f (x,κ(x)) if x ∈ A
implies that x+ = f (x,κ(x)) ∈ A
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Stability and asymptotic stability

Stability and attractivity of the origin

Given a (closed-loop) system x+ = f (x), with the
origin as equilibrium, i.e. f (0) = 0

The origin is locally stable if for every ε> 0, there
exists δ> 0 such that |x| < δ implies |φ(k; x)| < ε
The origin is globally attractive if
limk→∞ |φ(k; x)| = 0 for any x ∈Rn
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Figure B.1: Stability of the origin.

where A has eigenvalues �1 = 0.5 and �2 = 2 with associated eigen-
vectors w1 and w2, shown in Figure B.2; w1 is the “stable” and w2 the
“unstable” eigenvector; the smooth function �(·) satisfies �(0) = 0
and (@/@x)�(0) = 0 so that x+ = Ax + �(x) behaves like x+ = Ax
near the origin. If �(x) ⌘ 0, the motion corresponding to an initial
state ↵w1, ↵ î 0, converges to the origin, whereas the motion corre-
sponding to an initial state ↵w2 diverges. If �(·) is such that it steers
nonzero states toward the horizontal axis, we get trajectories of the
form shown in Figure B.2. All trajectories converge to the origin but
the motion corresponding to an initial state ↵w2, no matter how small,
is similar to that shown in Figure B.2 and cannot satisfy the ",� defini-
tion of local stability. The origin is globally attractive but not stable. A
trajectory that joins an equilibrium point to itself, as in Figure B.2, is
called a homoclinic orbit. We collect below a set of useful definitions:

Definition B.7 (Various forms of stability). The closed positive invariant
set A is

(a) locally stable if, for each " > 0, there exists a � = �(") > 0 such that
|x|A < � implies |�(i;x)|A < " for all i 2 I�0.

(b) unstable, if it is not locally stable.

(c) locally attractive if there exists ⌘ > 0 such that |x|A < ⌘ implies
|�(i;x)|A ! 0 as i!1.

Global asymptotic stability and exponential stability

The origin is globally

Ï asymptotically stable (GAS) if it is locally stable and globally attractive
Ï exponentially stable (GES) if there exist c > 0 and γ ∈ (0,1) such that:

|φ(k; x)| ≤ c|x|γk for all k ≥ 0
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Asymptotic stability for constrained systems

GAS for constrained system

Let X be positively invariant for x+ = f (x)

The origin is
Ï locally stable in X if for every ε> 0 there exists δ> 0 such that

for any x ∈X∩δB there holds |φ(k; x)| < ε for all k ≥ 0
Ï attractive if for every x ∈X there holds limk→∞ |φ(k; x)| = 0
Ï asymptotically stable in X if it is locally stable and attractive

X is called region (or domain) of attraction for the origin

Comparison function

A function σ :R≥0 →R≥0 is of class K if it is continuous, σ(0) = 0
and strictly increasing (K∞ if unbounded)

A function β :R≥0 ×N→R≥0 is of class K L if for each t ∈N,
β(·, t ) is a K function, and for each s ∈R≥0, limt→∞β(s, t ) = 0

GAS is equivalent to |φ(k; x)| ≤β(|x|,k) for all k ≥ 0, β(·) ∈K L
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Lyapunov functions and asymptotic stability

General definition

A function V :Rn →R≥0 is a Lyapunov function for x+ = f (x)
if there exist K∞ functions α1,α2,α3 such that for all x ∈Rn :

α1(|x|) ≤V (x) ≤α2(|x|)
V ( f (x))−V (x) ≤−α3(|x|)

V decreases during the evolution of the system

Lyapunov functions and GAS

If V (·) is a Lyapunov function for x+ = f (x), the origin is globally asymptotically
stable
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Lyapunov functions and stability for constrained systems

Asymptotic stability

Then, the origin is asymptotically stable in X if:

X is positively invariant for x+ = f (x)

V (·) is a Lyapunov function for x+ = f (x)

Exponential Lyapunov function and stability

The origin of x+ = f (x) is exponentially stable in X if

X is positively invariant for x+ = f (x)

There exist V :Rn →R≥0 and positive constants a, a1, a2, a3:

a1|x|a ≤V (x) ≤ a2|x|a
V ( f (x))−V (x) ≤−a3|x|a
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Linear quadratic MPC formulation

Prototype MPC problem

Given current state x(0) = x, solve for the input sequence
u = {u(0; x),u(1; x), . . . ,u(N −1; x)}

PN (x) : min
u

VN (x,u) s.t.

x+ = Ax +Bu

x( j ) ∈X for all j = 0, . . . , N −1

u( j ) ∈U for all j = 0, . . . , N −1

x(N ) ∈X f

Cost function:

VN (x,u) =
N−1∑
j=0

`(x( j ),u( j ))+V f (x(N )), `(x,u) = x ′Qx+u′Ru

Terminal cost: V f (x) = x ′P x
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Closed-loop system and basic path for stability

Closed-loop system

Given the optimal solution sequence u0(x), function of
current state x, denote the implicit MPC control law

κN (x) = u0(0; x)

Closed-loop system: x+ = Ax +BκN (x)

Notice that κN : XN →U is not linear

Basic route to prove stability

Show that V 0
N (·) is a Lyapunov function for

x+ = f (x) = Ax +κN (x)

Show that the feasibility set, XN , is positively invariant

(Control invariance of X f ) For every x ∈X f , there exists
u ∈U: x+ = Ax +Bu ∈X f V f (x+)−V f (x) ≤−`(x,u)
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Stability proof

Lemma. Optimal cost decrease

For all x ∈XN , there holds: V 0
N (Ax +BκN (x))−V 0

N (x) ≤−`(x,κN (x))

Proof

Consider the optimal input and state sequences
u0(x) = {u0(0; x),u0(1; x), . . . ,u0(N −1; x)}
x0(x) = {x0(0), x0(1), . . . , x0(N )}

At next time, given x+ = Ax +BκN (x), consider a candidate
sequence ũ := {u0(1; x), . . . ,u0(N −1; x),u(N )}

Choose u(N ) ∈U such that x(N +1) = Ax0(N ; x)+Bu(N ) ∈X f

and V f (x(N +1))+`(x(N ),u(N )) ≤V f (x0(N ))

ũ is feasible and VN (x+, ũ) ≤V 0
N (x)−`(x,κN (x))

But not optimal for PN (x+). Thus:

V 0
N (x+) ≤VN (x+, ũ) ≤V 0

N (x)−`(x,κN (x))
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Examples of linear MPC: the origin as terminal set

Simple idea

(No) Terminal cost: V f (x) = 0

Terminal set: X f = {0}

Drawbacks

The feasibility set XN may be small because one needs to
reach the origin in N steps (with constrained input u ∈U)

Closed-loop evolution of x+ = Ax +BκN (x) and open-loop
trajectory {x0(0), x0(1), . . . , x0(N −1),0} may be very different
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Examples of linear MPC: Rawlings and Muske [1993]

Open-loop stable systems

Terminal cost: V f (x) := x ′P x with P solution to the
Lyapunov equation:

P = A′PA+Q notice that: P =
∞∑

j=0
(A j )′Q A j

Terminal set X f =X

Open-loop unstable systems

Perform Schur decomposition: A = [ Ss Su ]
[

As Asu
0 Au

][
S′

s
S′

u

]
Solve reduced Lyapunov equation: Π= A′

sΠAs +S′
sQSs

Terminal cost: V f (x) = x ′P x with P = S′
sΠSs

Terminal set: X f = {x ∈X | S′
u x = 0}
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Examples of linear MPC: Scokaert and Rawlings [1998]

Now considered the “standard” formulation

Terminal cost: V f (x) = x ′P x, from the Riccati equation:

P =Q + A′PA− A′PB(B ′PB +R)−1B ′PA

Terminal set: X f = {x ∈Rn |V f (x) ≤α} with α> 0 suitably
chosen such that

x ∈X K x ∈U with K =−(B ′PB +R)−1B ′PA

Comments

Closed-loop and open-loop trajectories coincide

It is an infinite-horizon optimal formulation

Often the terminal constraint is not enforced, but verified
a-posteriori (increasing N if not satisfied)
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Types of uncertainties

... The bare truth

The true controlled system does not satisfy x+ = Ax +Bu

The true state x is not known exactly

Additive uncertainty

The true system is modeled as

x+ = f (x,u)+w with f (x,u) = Ax +Bu

The disturbance w is unknown but bounded, w ∈W
(W compact and convex)

Alternative LTV description (convex hull)

x(k +1) = A(k)x(k)+B(k)u(k) with {A(k),B(k)} =
M∑

i=1
µi (k){A(i ),B(i )}
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Closed-loop uncertain system under nominal MPC

Difference inclusion description

The true system can be modeled as a difference inclusion

x+ ∈ F (x,u) = { f (x,u)+w | w ∈W}

If the state is not precisely known:

u = κN (x +e) with e ∈ E (compact and convex)

The closed-loop system evolves as:

x+ ∈ H(x) = { f (x,κN (x +e))+w | e ∈ E, w ∈W}

with a generic solution denoted as φew (k; x)

Fundamental questions: ifW and E are small sets

Is PN solvable at all times (recursive feasibility)?

Does the following robust stability condition hold?

|φew (k; x)| ≤β(|x|,k)+ε with ε> 0
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Inherent robustness of linear MPC

Properties of PN for linear MPC [Grimm et al., 2004]

The optimal cost function V 0
N (·) is continuous (in x)

The optimal MPC law κN (·) is continuous (in x)

Robust asymptotic stability

Grimm et al. [2004] showed that if:
Ï there exists a continuous Lyapunov function for the nominal

system x+ = f (x,κN (x)), and
Ï PN is feasible at all times

Then, for any ε> 0 there exists δ> 0 such that if {W,E} ∈ δB:
|φew (k; x)| ≤β(|x|,k)+ε

In [Grimm et al., 2004] recursive feasibility was assumed

... Proved in [Pannocchia et al., 2011a,b]
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What is suboptimal MPC?

Why suboptimal MPC? ...A practical problem

Despite its convexity (only for linear MPC), solving PN (x) up
to optimality may be difficult if a short decision time is
allowed

Stability theory assumed that PN (x) is solved exactly

What is the impact of using a suboptimal solution to PN (x)?

A neat suboptimal MPC framework [Scokaert et al., 1999]

Given current state x, previous control sequence
u− = {u−(0),u−(1), . . . ,u−(N −1)} and state sequence
x− = {x−(0), x−(1), . . . , x−(N )}

Build a warm-start: u0 = {u−(1), . . . ,u−(N −1),κ f (x−(N ))}

Perform some iterations to improve the warm start:

VN (x,u) ≤VN (x,u0)
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Stability under suboptimal MPC

An additional ingredient

To prove GAS, an additional requirement is enforced

VN (x,u) ≤V f (x) if x ∈ rB⊂X f

r > 0 can be arbitrarily small: additional constraint will not matter

Sketch of stability proof.

Consider the extended state: z = (x,u)

The successor suboptimal input sequence u+ is a function of
the x+ and of the warm-start. Hence u+ = g (x,u)

The extended state evolves as[
x+
u+

]
=

[
Ax+B [I 0]u

g (x,u)

]
or z+ = h(z)

VN (·) is a Lyapunov function for z+ = h(z)

Additional condition implies GAS in the non-extended state
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Inherent robustness of suboptimal MPC (1/2)

Comments on the suboptimal cost and control

The suboptimal control is not unique, i.e. κN (x) is
set-valued map

The suboptimal cost function VN (·) is not continuous in x

The proof of [Grimm et al., 2004] for inherent robustness
does not hold for suboptimal MPC

New results [Pannocchia et al., 2011a,b]

Suboptimal MPC is inherently robust

Recursive feasibility can be established

Optimal and suboptimal MPC have the same (qualitative)
stability properties
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Inherent robustness of suboptimal MPC (2/2)

Sketch of robust stability proof.

The perturbed extended system evolves as a difference
inclusion

z+ = H(z) := {(x+,u+) | x+ = Ax +Bu(0; x +e)+w,u+ ∈G(z)}

Show exponential stability in the extended state

Prove that exist γ ∈ (0,1) and µ> 0

VN (z+) ≤ max{γVN (z),µ}

VN (·) is continuous in z and implies robust stability in the
extended state

The additional condition implies robust stability in the
non-extended state
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Robust MPC design: an introduction (1/2)

An example [Rawlings and Mayne, 2009]

(Nominal) system: x+ = x +u, without constraints X=U=R
MPC design: N = 3, `(x,u) = x2 +u2, V f (x) = x2

Open-loop control vs feedback policies

OL Given initial state x(0) = x, solve for u = [u(0), u(1), u(2)]′:

u0(x) = [−0.615x −0.231x −0.077x
]′

FB Use dynamic programming to obtain a feedback policy:

µ0 = [−0.615x(0) −0.6x(1) −0.5x(2)
]′

Evolution in the presence of uncertainties

Same nominal evolution is obtained

Considering disturbances: x+ = x +u +w , different trajectories are obtained
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Robust MPC design: an introduction (2/2)

Trajectories in three cases

Three disturbance sequences:
Ï w0 = {0, 0, 0}
Ï w1 = {1, 1, 1}
Ï w2 = {−1, −1, −1}

i
i
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Figure 3.1: Open-loop and feedback trajectories.

system x+ = x + u in which the disturbance is neglected. With this
cost function, the solution to P⇤3 (x) is the DP solution, obtained above,
to the deterministic nominal optimal control problem.

We now compare two solutions to P3(x): the open-loop solution
in which ⇧ is restricted to be the set of control sequences, and the
feedback solution in which ⇧ is the class of admissible policies. The
solution to the first problem is the solution to the deterministic prob-
lem discussed previously; the optimal control sequence is

u0(x) = {�(8/13)x,�(3/13)x,�(1/13)x}

in which x is the initial state at time 0. The solution to the second
problem is the sequence of control laws determined previously, also for
the deterministic problem, using dynamic programming; the optimal
policy is ⇡0 = {µ0

0(·), µ0
1(·), µ2(·)} where the control laws (functions)

µi(·), i = 0,1,2, are defined by

µ0
0(x) := 0

3(x) = �(8/13)x, 8x 2 IR
µ0

1(x) := 0
2(x) = �(3/5)x, 8x 2 IR

µ0
2(x) := 0

1(x) = �(1/2)x, 8x 2 IR

The two solutions, u0(·) and ⇡ , when applied to the uncertain system
x+ = x + u +w do not yield the same trajectories for all disturbance
sequences. This is illustrated in Figure 3.1 for the three disturbance
sequences, w0 := {0,0,0}, w1 := {1,1,1}, and w2 := {�1,�1,�1};

Feedback policies are clearly more effective against disturbances
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Min-max MPC

Conceptual framework

Prediction model x+ = Ax +Bu +w with w ∈W (compact)

Robustly invariant terminal set X f [Blanchini, 1999]

Open-loop min-max: u = [ u(0) u(1) ··· u(N−1) ]

min
u

max
w

VN (x,u,w) s.t.

x( j +1) = Ax( j )+Bu( j )+w( j )

x( j ) ∈X, w( j ) ∈W, u( j ) ∈U for j = 0, . . . , N −1

x(N ) ∈X f

Feedback min-max: µ= [µ(x(0)) µ(x(1)) ··· µ(x(N−1)) ]

min
µ

max
w

VN (x,µ,w) s.t.

x( j +1) = Ax( j )+Bµ(x( j ))+w( j )

x( j ) ∈X, w( j ) ∈W, µ(x( j )) ∈U for j = 0, . . . , N −1

x(N ) ∈X f
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Tube-based MPC (1/3)

Set algebra

Some notation
Ï Set addition: A⊕B = {a +b | a ∈ A, b ∈ B}
Ï Set subtraction: AªB = {x ∈Rn | {x}⊕B ⊆ A}
Ï Set multiplication: let K ∈Rm×n . K A = {K a | a ∈ A}

Outer-bounding tube

Uncertain linear system: x+ = Ax +Bu +w , w ∈W
Nominal system: z+ = Az +B v

Affine feedback policy: u = v +K (x − z)

Error, e = x − z, evolves as: e+ = (A+BK )e +w = AK e +w

If we set z(0) = x(0), i.e. e(0) = 0, then

e(i ) ∈ SK (i ) =
i−1∑
j=0

A j
KW⊆ S
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Tube-based MPC (2/3)

Constraint tightening

Constraints on the uncertain system: x(i ) ∈X, u(i ) ∈U
Tightened constraints on the nominal system:
z(i ) ∈Z=XªS, v(i ) ∈V=UªK S

A sketch of nominal and uncertain trajectories

i
i
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Figure 3.4: Outer-bounding tube X(z,v).

admissible realization of w lies in the tube X(z,v). See Figure 3.4. An
obvious choice for z(0) that ensures e(0) 2 SK(1) is z(0) = x(0).

3.4.3 Tube-Based MPC for Linear Systems with Additive Distur-
bances

3.4.3.1 Introduction

Now that we have shown how to contain all the trajectories of an un-
certain system emanating from the current state within a tube X(z,v)
where z is the initial state of the nominal system and v is an open-loop
control sequence, it is time to see how this tool may be used to obtain
robust control. We restrict attention in this subsection to constrained
linear systems with a bounded additive disturbance. In later sections
we consider alternative forms of uncertainty such as parametric uncer-
tainty as well as constrained robust control of constrained nonlinear
systems. Our goal is to develop forms of robust MPC that, despite the
uncertainty, are only marginally more complex than nominal MPC.

In this subsection, we discuss first how to formulate an optimal
control problem, the solution of which yields a control policy that min-
imizes a cost and ensures that the state and control satisfy the given
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Tube-based MPC (3/3)

Nominal MPC problem with restricted constraints

P̄N (z) : min
v

VN (z,v) s.t. z+ = Az +B v

z( j ) ∈Z for all j = 0, . . . , N −1

v( j ) ∈V for all j = 0, . . . , N −1

z(N ) ∈Z f

Tube-based MPC
Initialization At time k = 0, set z(0) = x(0)

Step 1 Given current augmented state (x, z), solve P̄N (z) and obtain
nominal control v = κ̄N (z)

Step 2 Apply control: u = v +K (x − z)

Step 3 Compute nominal successor state: z+ = Az +B v and measure
successor state x+

Step 4 Replace (x, z) ← (x+, z+), go to Step 1
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Output feedback MPC: main definitions

True system and state estimator

Uncertain LTI system

x+ = Ax +Bu +w

y =C x + v

Bounded disturbances: w ∈W, v ∈V
Simple Luenberger observer:

x̂+ = Ax̂ +Bu +L(y − ŷ) with ŷ =C x̂

Estimation error e := x − x̂ evolves as

e+ = (A−LC )e + w̃ with w̃ := w −Lv ∈ W̃ :=W⊕ (−LV)

Output feedback MPC

Solve PN (x̂) and apply κN (x̂)
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Nominal stability of output feedback MPC

Deterministic case

In the ideal situation: W= {0} and V= {0}: e+ = (A−LC )e

The origin of e+ = (A−LC )e is exponentially stable

Estimator state evolves as: x̂+ = Ax̂ +Bu +LCe

Main result [Scokaert et al., 1997]

Let φ(k; x,e) be the solution at time k of x+ = Ax +BκN (x̂)

The following asymptotic stability condition holds:

|φ(k; x,e)| ≤β(|(x,e)|,k) for all k ∈N

for any initial state x ∈C ⊂XN and estimate error e ∈ E
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Offset-free MPC based on disturbance model

Some reminders

The augmented system (x ∈Rn ,u ∈Rm , y ∈Rp ,d ∈Rnd )

x+ = Ax +Bu +Bd d

d+ = d

y =C x +Cd d

Observability requirements

(A,C ) observable rank
[

A−I Bd
C Cd

]
= n +nd

Tracked variables, target calculator and dynamic optimization

Controlled variables: r = H y , with r ∈Rpr and pr ≤ min{p,m}

Target calculator chooses targets (xs ,us ) such that:
xs = Axs +Bus +Bd d , r̄ = H(C xs +Cd d)

Dynamic optimization regulates deviation variables:
x̃ = x −xs → 0, ũ = u −us → 0
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Zero offset [Muske and Badgwell, 2002, Pannocchia and
Rawlings, 2003, Maeder et al., 2009]

Theorem statement

Let nd = p, assume that:
Ï MPC feasible at all times, unconstrained for k ≥ k̄
Ï Closed loop reaches steady values: (u∞, y∞), (x̂∞, d̂∞), (xs ,us )

Then, there is zero offset in r : r∞ = H y∞ = r̄

Sketch of proof

Stability of the observer implies that Ld ∈Rp×p is full rank:
d̂∞ = d̂∞+Ld (y∞−C x̂∞−Cd d̂∞) ⇒ y∞ =C x̂∞+Cd d̂∞
Target satisfies: r̄ = H(C xs +Cd d̂∞)

Since constraints are inactive (at steady state), ũ∞ = K x̃∞
Hence: x̃∞ = (A+BK )x̃∞ ⇒ x̃∞ = x̂∞−xs = 0 ⇒ x̂∞ = xs

Combining all steps: H(C x̂∞+Cd d̂∞) = H y∞ = r∞ = r̄
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Equivalence of disturbance models and observer design

A debate: what is the best choice for (Bd ,Cd )?

There were evidences that Bd = 0, Cd = I was a bad choice
[Lundström et al., 1995, Muske and Badgwell, 2002,
Pannocchia, 2003, Pannocchia and Rawlings, 2003, Maeder
et al., 2009, Bageshwar and Borrelli, 2009]

A change of perspective

Rajamani et al. [2004, 2009] argued that two augmented
systems with same (A,B ,C ) and different (Bd ,Cd ) are two
non-minimal realizations of the same system

A transformation matrix T makes them equivalent

A1 =
[ A Bd1

0 I

]
, B1 =

[
B
0

]
, C1 = [C Cd1 ] , L1 =

[
Lx1
Ld1

]
A2 =

[ A Bd2
0 I

]= T A1T −1, B2 =
[

B
0

]= T B1, C2 = [C Cd1 ] =
C1T −1, L2 = T L1

Choose any (Bd ,Cd ) and determine (Lx ,Ld ) from data
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H∞ interpretation of disturbance models

H∞ interpretation [Pannocchia and Bemporad, 2007]

System P subject to a disturbance w ∈Rn+p

x+ = Ax +Bu +Bw w Bw = [ In 0 ]

y =C x + +Dw w Dw = [ 0 Ip ]

Design a dynamic observer L :

ξ+ = ALξ+BLe with e = y − ŷ

v =CLξ+DLe

Estimator in closed loop:

x̂+ = Ax̂ +Bu +Bv v Bv = [ In 0 ]

ŷ =C x + +Dv v Dv = [ 0 Ip ]

Equivalent to the augmented system and observer:
AL = Ip , Bd = ABvCL , Cd = DvCL

Lx = ABv DL(I +Dv DL)−1, Ld = BL(I +Dv DL)−1

An H∞ observer L such that the DC-gain w → s = e
is zero is such that AL = I

P

L
v

ws

e
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Alternative methods for offset-free MPC design (1/2)

Delta input form

Assume for simplicity r = y . Define δu(k) = u(k)−u(k −1),
i.e. u(k) = u(k −1)+δu(k), and the augmented system[

x(k+1)
u(k)

]
= [ A B

0 Im

][
x(k)

u(k−1)

]
+ [

B
I

]
δu(k)

y(k) = [C 0 ]
[

x(k)
u(k−1)

]
Observer to estimate xa(k) =

[
x(k)

u(k−1)

]
Solve the dynamic optimization penalizing (y − r̄ ) and δu

Apply u(k) = u(k −1)+δu0(k)

Observations

The system is observable only if p ≥ m

Does not require a target calculator

True input u(k −1) and its estimate û(k −1) may be different
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Alternative methods for offset-free MPC design (2/2)

Velocity form

δx(k) = x(k)−x(k −1), δu(k) = u(k)−u(k −1), z = y − r̄

Augmented system:[
δx
z

]+ =
[

A 0
C A Ip

][
δx
z

]+ [
B

C B

]
δu

y − r̄ = [ 0 I ]
[
δx
z

]
Observer to estimate xa = [

δx
z

]
Solve the dynamic optimization penalizing z and δu

Apply u(k) = u(k −1)+δu0(k)

Observations

The system is stabilizable only if p ≤ m

Does not require a target calculator

May show windup issues if the setpoint r̄ is not reachable
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