Course on Model Predictive Control Part III – Stability and robustness

Gabriele Pannocchia

Department of Chemical Engineering, **University of Pisa**, Italy Email: g.pannocchia@diccism.unipi.it

Centro E. Piaggio bioengineering and robotics research center

Facoltà di Ingegneria, Pisa. September 17th, 2012. Aula Pacinotti

Outline

- Preliminaries on stability analysis and Lyapunov functions
- Closed loop description
- Stability results
- Nominal (inherent) robustness
 - Perturbed closed-loop system
 - Robust stability and recursive feasibility

Suboptimal MPC: stability and robustness

- Robust MPC design
 - Min-max
 - Tube-based robust MPC
- Output feedback MPC
 - Stability analysis
 - Offset-free MPC analysis and design

Some preliminary definitions

Discrete-time system

• Consider general nonlinear discrete-time systems:

$$x^+ = f(x, u)$$

with $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ continuous

- Let φ(k; x, u) be the solution of x⁺ = f(x, u) at time k for initial state x(0) = x and control sequence u = {u(0), u(1), ...}
- **Given a state-feedback** law $u = \kappa(x)$, obtain a **closed-loop**

 $x^+ = f(x, \kappa(x))$ denote again the solution as $\phi(k; x)$

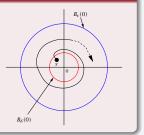
Equilibrium and positive invariance

- A **point** x^* is an **equilibrium point** of $x^+ = f(x, \kappa(x))$ if $x(0) = x^*$ implies that $x(k) = \phi(k; x^*) = x^*$ for all $k \ge 0$
- A set *A* is positively invariant for $x^+ = f(x, \kappa(x))$ if $x \in A$ implies that $x^+ = f(x, \kappa(x)) \in A$

Stability and asymptotic stability

Stability and attractivity of the origin

- Given a (closed-loop) system x⁺ = f(x), with the origin as equilibrium, i.e. f(0) = 0
- The origin is locally stable if for every ε > 0, there exists δ > 0 such that |x| < δ implies |φ(k; x)| < ε
- The origin is globally attractive if $\lim_{k\to\infty} |\phi(k;x)| = 0$ for any $x \in \mathbb{R}^n$



Global asymptotic stability and exponential stability

- The origin is globally
 - ► asymptotically stable (GAS) if it is locally stable and globally attractive
 - **exponentially stable** (GES) if there exist c > 0 and $\gamma \in (0, 1)$ such that:

$$|\phi(k;x)| \le c|x|\gamma^k$$
 for all $k \ge 0$

Asymptotic stability for constrained systems

GAS for constrained system

- Let X be **positively invariant** for $x^+ = f(x)$
- The origin is
 - ► **locally stable** in X if for every e > 0 there exists $\delta > 0$ such that for any $x \in X \cap \delta \mathbb{B}$ there holds $|\phi(k; x)| < e$ for all $k \ge 0$
 - **attractive** if for every $x \in X$ there holds $\lim_{k \to \infty} |\phi(k; x)| = 0$
 - ► asymptotically stable in X if it is locally stable and attractive
- X is called **region (or domain) of attraction** for the origin

Comparison function

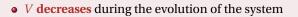
- A function σ : ℝ_{≥0} → ℝ_{≥0} is of class *K* if it is continuous, σ(0) = 0 and strictly increasing (*K*∞ if unbounded)
- A function $\beta : \mathbb{R}_{\geq 0} \times \mathbb{N} \to \mathbb{R}_{\geq 0}$ is of **class** $\mathcal{K} \mathscr{L}$ if for **each** $t \in \mathbb{N}$, $\beta(\cdot, t)$ is a \mathcal{K} function, and **for each** $s \in \mathbb{R}_{\geq 0}$, $\lim_{t \to \infty} \beta(s, t) = 0$
- GAS is **equivalent** to $|\phi(k; x)| \le \beta(|x|, k)$ for all $k \ge 0$, $\beta(\cdot) \in \mathcal{KL}$

Lyapunov functions and asymptotic stability

General definition

• A function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is a **Lyapunov function** for $x^+ = f(x)$ if there **exist** \mathcal{K}_{∞} **functions** $\alpha_1, \alpha_2, \alpha_3$ such that **for all** $x \in \mathbb{R}^n$:

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$ $V(f(x)) - V(x) \le -\alpha_3(|x|)$



Lyapunov functions and GAS

If $V(\cdot)$ is a Lyapunov function for $x^+ = f(x)$, the origin is globally asymptotically stable

Lyapunov functions and stability for constrained systems

Asymptotic stability

Then, the origin is **asymptotically stable** in X if:

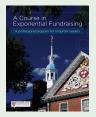
- X is **positively invariant** for $x^+ = f(x)$
- $V(\cdot)$ is a **Lyapunov function** for $x^+ = f(x)$

Exponential Lyapunov function and stability

The origin of $x^+ = f(x)$ is **exponentially stable** in X if

- X is **positively invariant** for $x^+ = f(x)$
- There exist $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and **positive constants** a, a_1, a_2, a_3 :

$$a_1|x|^a \le V(x) \le a_2|x|^a$$
$$V(f(x)) - V(x) \le -a_3|x|^a$$



Linear quadratic MPC formulation

Prototype MPC problem

• Given current state x(0) = x, solve for the input sequence $\mathbf{u} = \{u(0; x), u(1; x), \dots, u(N-1; x)\}$

$$\mathbb{P}_{N}(x): \min_{\mathbf{u}} V_{N}(x, \mathbf{u}) \quad \text{s.t.}$$

$$x^{+} = Ax + Bu$$

$$x(j) \in \mathbb{X} \quad \text{for all } j = 0, \dots, N-1$$

$$u(j) \in \mathbb{U} \quad \text{for all } j = 0, \dots, N-1$$

$$x(N) \in \mathbb{X}_{f}$$

• Cost function:

$$V_N(x, \mathbf{u}) = \sum_{j=0}^{N-1} \ell(x(j), u(j)) + V_f(x(N)), \qquad \ell(x, u) = 0$$

 $\ell(x, u) = x'Qx + u'Ru$

• **Terminal** cost: $V_f(x) = x' P x$

Closed-loop system and basic path for stability

Closed-loop system

• Given the **optimal solution sequence u**⁰(*x*), function of current state *x*, denote the **implicit MPC control** law

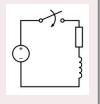
$$\kappa_N(x) = u^0(0;x)$$

- Closed-loop system: $x^+ = Ax + B\kappa_N(x)$
- Notice that $\kappa_N : \mathscr{X}_N \to \mathbb{U}$ is **not linear**

Basic route to prove stability

- Show that $V_N^0(\cdot)$ is a **Lyapunov function** for $x^+ = f(x) = Ax + \kappa_N(x)$
- Show that the **feasibility set**, \mathscr{X}_N , is **positively invariant**
- (Control invariance of X_f) For every $x \in X_f$, there exists $u \in \mathbb{U}$: $x^+ = Ax + Bu \in X_f$ $V_f(x^+) V_f(x) \le -\ell(x, u)$

Course on Model Predictive Control, Part III - Stability and robustness



Stability proof

Lemma. Optimal cost decrease

For all $x \in \mathcal{X}_N$, there holds: $V_N^0(Ax + B\kappa_N(x)) - V_N^0(x) \le -\ell(x, \kappa_N(x))$

Proof

- Consider the **optimal input and state sequences** $\mathbf{u}^{0}(x) = \{u^{0}(0; x), u^{0}(1; x), \dots, u^{0}(N-1; x)\}\$ $\mathbf{x}^{0}(x) = \{x^{0}(0), x^{0}(1), \dots, x^{0}(N)\}\$
- At next time, given $x^+ = Ax + B\kappa_N(x)$, consider a candidate sequence $\tilde{\mathbf{u}} := \{u^0(1; x), \dots, u^0(N-1; x), u(N)\}$
- Choose $u(N) \in \mathbb{U}$ such that $x(N+1) = Ax^0(N; x) + Bu(N) \in \mathbb{X}_f$ and $V_f(x(N+1)) + \ell(x(N), u(N)) \le V_f(x^0(N))$
- $\tilde{\mathbf{u}}$ is **feasible** and $V_N(x^+, \tilde{\mathbf{u}}) \le V_N^0(x) \ell(x, \kappa_N(x))$
- But **not optimal** for $\mathbb{P}_N(x^+)$. Thus:

 $V_N^0(\boldsymbol{x}^+) \leq V_N(\boldsymbol{x}^+, \tilde{\boldsymbol{\mathsf{u}}}) \leq V_N^0(\boldsymbol{x}) - \ell(\boldsymbol{x}, \kappa_N(\boldsymbol{x}))$

Examples of linear MPC: the origin as terminal set

Simple idea

- (No) **Terminal cost**: $V_f(x) = 0$
- **Terminal set**: $X_f = \{0\}$

Drawbacks

- The feasibility set \mathscr{X}_N may be small because one needs to reach the origin in N steps (with constrained input $u \in \mathbb{U}$)
- **Closed-loop evolution** of $x^+ = Ax + B\kappa_N(x)$ and **open-loop** trajectory { $x^0(0), x^0(1), \dots, x^0(N-1), 0$ } may be **very different**

Examples of linear MPC: Rawlings and Muske [1993]

Open-loop stable systems

• Terminal cost: $V_f(x) := x'Px$ with *P* solution to the Lyapunov equation:

$$P = A'PA + Q$$
 notice that: $P = \sum_{j=0}^{\infty} (A^j)'QA^j$

• Terminal set
$$X_f = X$$

Open-loop unstable systems

- Perform Schur decomposition: $A = \begin{bmatrix} S_s & S_u \end{bmatrix} \begin{bmatrix} A_s & A_{su} \\ 0 & A_u \end{bmatrix} \begin{bmatrix} S'_s \\ S'_u \end{bmatrix}$
- Solve **reduced** Lyapunov equation: $\Pi = A'_s \Pi A_s + S'_s QS_s$
- **Terminal cost:** $V_f(x) = x' P x$ with $P = S'_s \Pi S_s$
- **Terminal set**: $X_f = \{x \in X \mid S'_u x = 0\}$

Examples of linear MPC: Scokaert and Rawlings [1998]

Now considered the "standard" formulation

• **Terminal cost**: $V_f(x) = x' P x$, from the **Riccati equation**:

 $P = Q + A'PA - A'PB(B'PB + R)^{-1}B'PA$

• Terminal set: $X_f = \{x \in \mathbb{R}^n \mid V_f(x) \le \alpha\}$ with $\alpha > 0$ suitably chosen such that

$$x \in \mathbb{X}$$
 $Kx \in \mathbb{U}$ with $K = -(B'PB + R)^{-1}B'PA$

Comments

- Closed-loop and open-loop trajectories coincide
- It is an **infinite-horizon optimal** formulation
- Often the **terminal constraint** is **not enforced**, but verified **a-posteriori** (**increasing** *N* if not satisfied)

Types of uncertainties

... The bare truth

- The true controlled system does not satisfy $x^+ = Ax + Bu$
- The true state *x* is not known exactly

Additive uncertainty

• The true system is modeled as

$$x^+ = f(x, u) + w$$
 with $f(x, u) = Ax + Bu$

The disturbance *w* is unknown but bounded, *w* ∈ W
 (W compact and convex)

Alternative LTV description (convex hull)

$$x(k+1) = A(k)x(k) + B(k)u(k)$$

with
$$\{A(k), B(k)\} = \sum_{i=1}^{M} \mu_i(k) \{A(i), B(i)\}$$

Closed-loop uncertain system under nominal MPC

Difference inclusion description

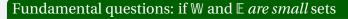
• The true system can be modeled as a difference inclusion

 $x^+ \in F(x, u) = \{f(x, u) + w \mid w \in \mathbb{W}\}$

• If the state is not precisely known:

 $u = \kappa_N(x + e)$ with $e \in \mathbb{E}$ (compact and convex) • The **closed-loop system** evolves as:

 $x^+ \in H(x) = \{f(x, \kappa_N(x+e)) + w \mid e \in \mathbb{E}, w \in \mathbb{W}\}$ with a generic solution denoted as $\phi_{ew}(k; x)$



- Is \mathbb{P}_N solvable at all times (**recursive feasibility**)?
- Does the following robust stability condition hold?

 $|\phi_{ew}(k;x)| \le \beta(|x|,k) + \epsilon \qquad \text{with } \epsilon > 0$

Inherent robustness of linear MPC

Properties of \mathbb{P}_N for linear MPC [Grimm et al., 2004]

- The optimal cost function $V_N^0(\cdot)$ is continuous (in *x*)
- The **optimal MPC law** $\kappa_N(\cdot)$ is continuous (in *x*)

Robust asymptotic stability

- Grimm et al. [2004] showed that if:
 - ► there exists a **continuous Lyapunov function** for the nominal system $x^+ = f(x, \kappa_N(x))$, and
 - \mathbb{P}_N is feasible at all times
- Then, for any $\epsilon > 0$ there exists $\delta > 0$ such that if $\{\mathbb{W}, \mathbb{E}\} \in \delta \mathbb{B}$: $|\phi_{ew}(k; x)| \le \beta(|x|, k) + \epsilon$

In [Grimm et al., 2004] recursive feasibility was assumed

... Proved in [Pannocchia et al., 2011a,b]

What is suboptimal MPC?

Why suboptimal MPC? ... A practical problem

- Despite its **convexity** (only for **linear MPC**), solving $\mathbb{P}_N(x)$ **up to optimality** may be difficult if a **short decision time** is allowed
- **Stability theory** assumed that $\mathbb{P}_N(x)$ is **solved exactly**
- What is the **impact** of using a **suboptimal solution** to $\mathbb{P}_N(x)$?

A neat suboptimal MPC framework [Scokaert et al., 1999]

- Given current state x, previous control sequence $\mathbf{u}^- = \{u^-(0), u^-(1), \dots, u^-(N-1)\}$ and state sequence $\mathbf{x}^- = \{x^-(0), x^-(1), \dots, x^-(N)\}$
- Build a warm-start: $\mathbf{u}_0 = \{u^-(1), \dots, u^-(N-1), \kappa_f(x^-(N))\}$
- Perform some iterations to improve the warm start:

 $V_N(x,\mathbf{u}) \le V_N(x,\mathbf{u}_0)$

Stability under suboptimal MPC

An additional ingredient

• To prove GAS, an additional requirement is enforced

$$V_N(x, \mathbf{u}) \le V_f(x)$$
 if $x \in r \mathbb{B} \subset \mathbb{X}_f$

• *r* > 0 can be **arbitrarily small**: additional constraint **will not matter**

Sketch of stability proof.

- Consider the **extended state**: $z = (x, \mathbf{u})$
- The successor suboptimal input sequence **u**⁺ is a function of the *x*⁺ and of the warm-start. Hence **u**⁺ = *g*(*x*, **u**)
- The extended state evolves as

$$\begin{bmatrix} x^+\\ \mathbf{u}^+ \end{bmatrix} = \begin{bmatrix} Ax + B[I0]\mathbf{u}\\ g(x,\mathbf{u}) \end{bmatrix} \quad \text{or } z^+ = h(z)$$

- $V_N(\cdot)$ is a **Lyapunov function** for $z^+ = h(z)$
- Additional condition implies GAS in the non-extended state

Inherent robustness of suboptimal MPC (1/2)

Comments on the suboptimal cost and control

- The suboptimal control is not unique, i.e. $\kappa_N(x)$ is set-valued map
- The suboptimal cost function $V_N(\cdot)$ is not continuous in x
- The proof of [Grimm et al., 2004] for **inherent robustness does not hold** for suboptimal MPC

- Suboptimal MPC is inherently robust
- Recursive feasibility can be established
- **Optimal and suboptimal** MPC have the **same (qualitative)** stability properties

Inherent robustness of suboptimal MPC (2/2)

Sketch of robust stability proof.

• The perturbed extended system evolves as a difference inclusion

 $z^{+} = H(z) := \{ (x^{+}, \mathbf{u}^{+}) \mid x^{+} = Ax + Bu(0; x + e) + w, \mathbf{u}^{+} \in G(z) \}$

- Show exponential stability in the extended state
- Prove that **exist** $\gamma \in (0, 1)$ and $\mu > 0$

 $V_N(z^+) \le \max\{\gamma V_N(z), \mu\}$

- *V_N*(·) is continuous in *z* and implies **robust stability** in the **extended state**
- The **additional condition** implies robust stability in the **non-extended state**

Robust MPC design: an introduction (1/2)

An example [Rawlings and Mayne, 2009]

- (Nominal) system: $x^+ = x + u$, without constraints $X = U = \mathbb{R}$
- MPC **design**: N = 3, $\ell(x, u) = x^2 + u^2$, $V_f(x) = x^2$

Open-loop control vs feedback policies

OL Given **initial state** x(0) = x, **solve** for $\mathbf{u} = [u(0), u(1), u(2)]'$:

$$\mathbf{u}^{0}(x) = \begin{bmatrix} -0.615x & -0.231x & -0.077x \end{bmatrix}'$$

FB Use dynamic programming to obtain a feedback policy:

$$\boldsymbol{\mu}^{0} = \begin{bmatrix} -0.615x(0) & -0.6x(1) & -0.5x(2) \end{bmatrix}'$$

Evolution in the presence of uncertainties

• Same nominal evolution is obtained

• Considering **disturbances**: $x^+ = x + u + w$, **different trajectories** are obtained

Robust MPC design: an introduction (2/2)

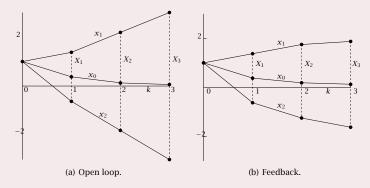
Trajectories in three cases

• Three disturbance sequences:

•
$$\mathbf{w}^0 = \{0, 0, 0\}$$

•
$$\mathbf{w}^1 = \{1, 1, 1\}$$

•
$$\mathbf{w}^2 = \{-1, -1, -1\}$$



• Feedback policies are clearly more effective against disturbances

Min-max MPC

Conceptual framework

- **Prediction model** $x^+ = Ax + Bu + w$ with $w \in \mathbb{W}$ (compact)
- **Robustly invariant terminal** set X_f [Blanchini, 1999]
- **Open-loop min-max:** $\mathbf{u} = [u(0) \ u(1) \ \cdots \ u(N-1)]$

min max $V_N(x, \mathbf{u}, \mathbf{w})$ s.t. x(j+1) = Ax(j) + Bu(j) + w(j) $x(j) \in \mathbb{X}, \quad w(j) \in \mathbb{W}, \quad u(j) \in \mathbb{U} \text{ for } j = 0, \dots, N-1$ $x(N) \in X_f$ • Feedback min-max: $\mu = [\mu(x(0)) \ \mu(x(1)) \ \cdots \ \mu(x(N-1))]$ $\min_{\boldsymbol{\mu}} \max_{\mathbf{w}} V_N(x, \boldsymbol{\mu}, \mathbf{w})$ s.t. $x(j+1) = Ax(j) + B\mu(x(j)) + w(j)$ $x(j) \in \mathbb{X}, \quad w(j) \in \mathbb{W}, \quad \mu(x(j)) \in \mathbb{U} \text{ for } j = 0, \dots, N-1$ $x(N) \in X_f$

Tube-based MPC (1/3)

Set algebra

• Some notation

- Set addition: $A \oplus B = \{a + b \mid a \in A, b \in B\}$
- Set **subtraction**: $A \ominus B = \{x \in \mathbb{R}^n \mid \{x\} \oplus B \subseteq A\}$
- ► Set **multiplication**: let $K \in \mathbb{R}^{m \times n}$. $KA = \{Ka \mid a \in A\}$

Outer-bounding tube

- **Uncertain linear system**: $x^+ = Ax + Bu + w, w \in \mathbb{W}$
- Nominal system: $z^+ = Az + Bv$
- Affine feedback policy: u = v + K(x z)
- **Error**, e = x z, evolves as: $e^+ = (A + BK)e + w = A_Ke + w$
- If we set z(0) = x(0), i.e. e(0) = 0, then

$$e(i) \in S_K(i) = \sum_{j=0}^{i-1} A_K^j \mathbb{W} \subseteq S$$

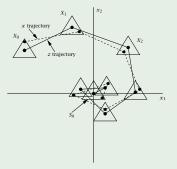
Tube-based MPC (2/3)

Constraint tightening

• **Constraints** on the **uncertain system**: $x(i) \in X$, $u(i) \in U$

• **Tightened** constraints on the **nominal system**: $z(i) \in \mathbb{Z} = \mathbb{X} \ominus S, v(i) \in \mathbb{V} = \mathbb{U} \ominus KS$

A sketch of nominal and uncertain trajectories



Tube-based MPC (3/3)

Nominal MPC problem with restricted constraints

 $\bar{\mathbb{P}}_{N}(z): \min_{\mathbf{v}} V_{N}(z, \mathbf{v}) \quad \text{s.t.} \quad z^{+} = Az + Bv$ $z(j) \in \mathbb{Z} \quad \text{for all } j = 0, \dots, N-1$ $v(j) \in \mathbb{V} \quad \text{for all } j = 0, \dots, N-1$ $z(N) \in \mathbb{Z}_{f}$

Tube-based MPC

Initialization At time k = 0, set z(0) = x(0)

- **Step 1** Given current **augmented state** (x, z), solve $\bar{\mathbb{P}}_N(z)$ and obtain **nominal control** $v = \bar{\kappa}_N(z)$
- **Step 2** Apply **control**: u = v + K(x z)
- **Step 3** Compute **nominal successor state**: $z^+ = Az + Bv$ and measure **successor state** x^+

Step 4 Replace $(x, z) \leftarrow (x^+, z^+)$, go to Step 1

Output feedback MPC: main definitions

True system and state estimator

• Uncertain LTI system

$$x^{+} = Ax + Bu + w$$
$$y = Cx + v$$

- Bounded disturbances: $w \in \mathbb{W}, v \in \mathbb{V}$
- Simple Luenberger observer:

$$\hat{x}^+ = A\hat{x} + Bu + L(y - \hat{y})$$
 with $\hat{y} = C\hat{x}$

- **Estimation error** $e := x \hat{x}$ evolves as
 - $e^+ = (A LC)e + \tilde{w}$ with $\tilde{w} := w Lv \in \tilde{W} := W \oplus (-LV)$

Output feedback MPC

• Solve $\mathbb{P}_N(\hat{x})$ and apply $\kappa_N(\hat{x})$

Nominal stability of output feedback MPC

Deterministic case

- In the **ideal situation**: $\mathbb{W} = \{0\}$ and $\mathbb{V} = \{0\}$: $e^+ = (A LC)e^-$
- The origin of $e^+ = (A LC)e$ is **exponentially stable**
- **Estimator state** evolves as: $\hat{x}^+ = A\hat{x} + Bu + LCe$

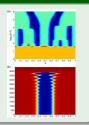
Main result [Scokaert et al., 1997]

- Let $\phi(k; x, e)$ be the **solution** at time k of $x^+ = Ax + B\kappa_N(\hat{x})$
- The following **asymptotic stability** condition holds:

 $|\phi(k; x, e)| \le \beta(|(x, e)|, k)$ for all $k \in \mathbb{N}$

for any **initial state** $x \in \mathcal{C} \subset \mathcal{X}_N$ and **estimate error** $e \in \mathcal{E}$

G Pannocchia



Offset-free MPC based on disturbance model

Some reminders

• The **augmented** system $(x \in \mathbb{R}^n, u \in \mathbb{R}^m, y \in \mathbb{R}^p, d \in \mathbb{R}^{n_d})$

$$x^{+} = Ax + Bu + B_{d}d$$
$$d^{+} = d$$
$$y = Cx + C_{d}d$$

• Observability requirements

(A, C) observable
$$\operatorname{rank} \begin{bmatrix} A-I & B_d \\ C & C_d \end{bmatrix} = n + n_d$$

Tracked variables, target calculator and dynamic optimization

- **Controlled** variables: r = Hy, with $r \in \mathbb{R}^{p_r}$ and $p_r \le \min\{p, m\}$
- Target calculator **chooses targets** (x_s, u_s) such that: $x_s = Ax_s + Bu_s + B_d d, \quad \bar{r} = H(Cx_s + C_d d)$
- **Dynamic optimization** regulates **deviation variables**: $\tilde{x} = x - x_s \rightarrow 0$, $\tilde{u} = u - u_s \rightarrow 0$

Zero offset [Muske and Badgwell, 2002, Pannocchia and Rawlings, 2003, Maeder et al., 2009]

Theorem statement

- Let $n_d = p$, assume that:
 - MPC **feasible** at all times, **unconstrained** for $k \ge \overline{k}$
 - ► **Closed loop** reaches **steady** values: $(u_{\infty}, y_{\infty}), (\hat{x}_{\infty}, \hat{d}_{\infty}), (x_s, u_s)$
- Then, there is **zero offset** in r: $r_{\infty} = Hy_{\infty} = \bar{r}$

Sketch of proof

- **Stability of the observer** implies that $L_d \in \mathbb{R}^{p \times p}$ is **full rank**: $\hat{d}_{\infty} = \hat{d}_{\infty} + L_d(y_{\infty} - C\hat{x}_{\infty} - C_d\hat{d}_{\infty}) \Rightarrow y_{\infty} = C\hat{x}_{\infty} + C_d\hat{d}_{\infty}$
- **Target** satisfies: $\bar{r} = H(Cx_s + C_d \hat{d}_{\infty})$
- Since constraints are inactive (at steady state), $\tilde{u}_{\infty} = K \tilde{x}_{\infty}$ Hence: $\tilde{x}_{\infty} = (A + BK) \tilde{x}_{\infty} \Rightarrow \tilde{x}_{\infty} = \hat{x}_{\infty} - x_s = 0 \Rightarrow \hat{x}_{\infty} = x_s$
- **Combining** all steps: $H(C\hat{x}_{\infty} + C_d\hat{d}_{\infty}) = Hy_{\infty} = r_{\infty} = \bar{r}$

Equivalence of disturbance models and observer design

A debate: what is the *best choice* for (B_d, C_d) ?

• There were **evidences** that $B_d = 0$, $C_d = I$ was a **bad choice** [Lundström et al., 1995, Muske and Badgwell, 2002, Pannocchia, 2003, Pannocchia and Rawlings, 2003, Maeder et al., 2009, Bageshwar and Borrelli, 2009]

A change of perspective

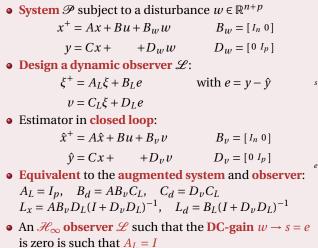
- Rajamani et al. [2004, 2009] argued that **two augmented** systems with same (*A*, *B*, *C*) and different (*B*_d, *C*_d) are two non-minimal realizations of the same system
- A transformation matrix T makes them equivalent

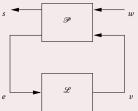
$$A_{1} = \begin{bmatrix} A & B_{d1} \\ 0 & I \end{bmatrix}, B_{1} = \begin{bmatrix} B \\ 0 \end{bmatrix}, C_{1} = \begin{bmatrix} C & C_{d1} \end{bmatrix}, L_{1} = \begin{bmatrix} L_{x1} \\ L_{d1} \end{bmatrix}$$
$$A_{2} = \begin{bmatrix} A & B_{d2} \\ 0 & I \end{bmatrix} = TA_{1}T^{-1}, B_{2} = \begin{bmatrix} B \\ 0 \end{bmatrix} = TB_{1}, C_{2} = \begin{bmatrix} C & C_{d1} \end{bmatrix} = C_{1}T^{-1}, L_{2} = TL_{1}$$

• Choose any (B_d, C_d) and determine (L_x, L_d) from data

\mathscr{H}_{∞} interpretation of disturbance models

\mathscr{H}_{∞} interpretation [Pannocchia and Bemporad, 2007]





Alternative methods for offset-free MPC design (1/2)

Delta input form

• Assume for simplicity r = y. Define $\delta u(k) = u(k) - u(k-1)$, i.e. $u(k) = u(k-1) + \delta u(k)$, and the **augmented system**

 $\begin{bmatrix} x(k+1) \\ u(k) \end{bmatrix} = \begin{bmatrix} A & B \\ 0 & I_m \end{bmatrix} \begin{bmatrix} x(k) \\ u(k-1) \end{bmatrix} + \begin{bmatrix} B \\ I \end{bmatrix} \delta u(k)$ $y(k) = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x(k) \\ u(k-1) \end{bmatrix}$ estimate x. (k) = $\begin{bmatrix} x(k) \\ x(k) \end{bmatrix}$

- **Observer** to estimate $x_a(k) = \begin{bmatrix} x(k) \\ u(k-1) \end{bmatrix}$
- Solve the **dynamic optimization** penalizing $(y \bar{r})$ and δu
- **Apply** $u(k) = u(k-1) + \delta u^0(k)$

Observations

- The system is **observable only** if $p \ge m$
- Does not require a target calculator
- **True input** u(k-1) and its **estimate** $\hat{u}(k-1)$ may be **different**

Alternative methods for offset-free MPC design (2/2)

Velocity form

•
$$\delta x(k) = x(k) - x(k-1), \, \delta u(k) = u(k) - u(k-1), \, z = y - \bar{r}$$

• Augmented system:

$$\begin{bmatrix} \delta x \\ z \end{bmatrix}^{+} = \begin{bmatrix} A & 0 \\ CA & I_p \end{bmatrix} \begin{bmatrix} \delta x \\ z \end{bmatrix} + \begin{bmatrix} B \\ CB \end{bmatrix} \delta u$$
$$y - \bar{r} = \begin{bmatrix} 0 & I \end{bmatrix} \begin{bmatrix} \delta x \\ z \end{bmatrix}$$

- **Observer** to estimate $x_a = \begin{bmatrix} \delta x \\ z \end{bmatrix}$
- Solve the **dynamic optimization** penalizing z and δu

• Apply
$$u(k) = u(k-1) + \delta u^0(k)$$

Observations

- The system is **stabilizable only** if $p \le m$
- Does not require a target calculator
- May show windup issues if the setpoint \bar{r} is not reachable

34 / 36

References I

- V. L. Bageshwar and F. Borrelli. On a property of a class of offset-free model predictive controllers. *IEEE Trans. Auto. Contr.*, 54(3):663–669, 2009.
- F. Blanchini. Set invariance in control. Automatica, 35:1747-1767, 1999.
- G. Grimm, M. J. Messina, S. E. Tuna, and A. R. Teel. Examples when nonlinear model predictive control is nonrobust. *Automatica*, 40:1729–1738, 2004.
- P. Lundström, J. H. Lee, M. Morari, and S. Skogestad. Limitations of dynamic matrix control. *Comp. Chem. Eng.*, 19:409–421, 1995.
- U. Maeder, F. Borrelli, and M. Morari. Linear offset-free model predictive control. *Automatica*, 45(10): 2214–2222, 2009.
- K. R. Muske and T. A. Badgwell. Disturbance modeling for offset-free linear model predictive control. J. Proc. Contr., 12:617–632, 2002.
- G. Pannocchia. Robust disturbance modeling for model predictive control with application to multivariable ill-conditioned processes. J. Proc. Cont., 13:693–701, 2003.
- G. Pannocchia and A. Bemporad. Combined design of disturbance model and observer for offset-free model predictive control. *IEEE Trans. Auto. Contr.*, 52(6):1048–1053, 2007.
- G. Pannocchia and J. B. Rawlings. Disturbance models for offset-free model predictive control. AIChE J., 49:426–437, 2003.
- G. Pannocchia, J. B. Rawlings, and S. J. Wright. Conditions under which suboptimal nonlinear MPC is inherently robust. *Syst. Contr. Lett.*, 60:747–755, 2011a.

References II

- G. Pannocchia, S. J. Wright, and J. B. Rawlings. Partial enumeration MPC: Robust stability results and application to an unstable cstr. J. Proc. Contr., 21(10):1459–1466, 2011b.
- M. R. Rajamani, J. B. Rawlings, and J. Qin. Optimal estimation in presence of incorrect disturbance model. Technical Report 2004–09 (Draft), TWMCC, Department of Chemical Engineering, University of Wisconsin-Madison, March 2004.
- M. R. Rajamani, J. B. Rawlings, and S. J. Qin. Achieving state estimation equivalence for misassigned disturbances in offset-free model predictive control. *AIChE J.*, 55(2):396–407, 2009.
- J. B. Rawlings and D. Q. Mayne. *Model Predictive Control: Theory and Design*. Nob Hill Publishing, Madison, WI, 2009.
- J. B. Rawlings and K. R. Muske. Stability of constrained receding horizon control. *IEEE Trans. Auto. Contr.*, 38:1512–1516, 1993.
- P. O. M. Scokaert and J. B. Rawlings. Constrained linear quadratic regulation. *IEEE Trans. Auto. Contr.*, 43:1163–1169, 1998.
- P.O.M. Scokaert, J. B. Rawlings, and E. S. Meadows. Discrete-time stability with perturbations: Application to model predictive control. *Automatica*, 33:463–470, 1997.
- P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings. Suboptimal model predictive control (feasibility implies stability). *IEEE Trans. Auto. Contr.*, 44:648–654, 1999.