Medical Devices An Introduction

Università di Pisa
May 24, 2016
Alice Ravizza
www.PGGScientific.com

The first step: a shared definition

- A Medical Device is identified by means of its INTENDED PURPOSE
- Intended to treat, prevent or control physiological characteristics of a living being
 - Disease
 - Handicap
 - Conception
 - Anatomy
 - •

Some examples of Medical Devices

- Band aids
- Incontinence pads
- ECG
- RMI
- Heart valves from bovine or porcine tissue
- Knee joints
- Hearing aids
- Vessel mesh
- Bone fillers

- Dental implants
- Bone screws both removable or permanent
- Defibrillators
- IV sets
 - Syringes
- Eye drops (artificial tears)
-and on

Comments

- Use on humans (or animals on a lower grade of regulation)
- Intended to have a MEDICAL purpose, excluding devices intended for
 - Esthetical purposes
 - Research not aimed to marketing of the device
- Multiple ways of interacting with the human body
 - Implant to NO corporeal interaction (medical SW)
 - Temporary or permanent
 - Acute or chronic
 - Energy or substance exchange

EC: Medical Device Directive

- The Medical Device Directive is a <u>law</u> that regulates the marketing of Medical Devices in the EC
- Details the device identification
 - Classification
 - Application (custom made, research, marketing...)
- Defines manufacturers responsibilities and duties
 - Essential Requirements for safety and performance
 - Surveillance
- Gives powers to the Local Authorities to control the putting on the market of the devices

Basic requirements in the MDD

- Give proof that the device is safe and effective for the intended use: Technical File
 - SAFE: testing as per standards
 - EFFECTIVE: non inferior to clinical state of the art (clinical trials)
- Give proof that the manufacturer can routinely manufacture device consistently: Quality Management System
 - Controlled manufacturing
 - Lot/ serial number control
 - General management procedures for suppliers, maintenance, calibration
- Continuous control: surveillance
 - On the market
 - Post market clinical trials

Risk based approach

Vulnerability of the human body

Potential risks associated with the devices

Criteria

- applied to a vast range of different medical devices and technologies
- combined in various ways in order to determine classification

Control

- Higher for higher risk classes
- From self- declaration to comprehensive device and company audit by Notified Body

Risk classes: criteria

- Intended use (central circulatory or nervous systems increase class)
- Duration of use (duration increases class)
- Kind of contact with the body (not invasive, invasive, implantable)
- Active or not active

Classification and control

- Class I: self declaration of compliance by manufacturer
 - band aids, ready-made reading glasses, surgical masks and gloves
- Class IIa and IIb: preliminary and annual audit by Notified Body on Technical File and on Manufacturing
 - Haemodialysis lines and machines; ECG; ventilators; needles of syringes; scalpels; tracheal tubes; ultrasound fetal heart detectors
- Class III: preliminary and annual audit by Notified Body on Design file, Technical File and on Manufacturing
 - Bovine heart valves; deep brain stimulators for Parkinson; bone implants with antibiotic; Coronary drug eluting stent; cerebrospinal drains

Special classes

- Custom made: self declaration+ clinician prescription
 - Glasses; dentures; most orthoses
- Clinical investigation: special authorization by CA and EC
 - Devices not yet legally approved, innovative
- Compassionate use: special authorization by CA and EC

A common trend: risk control

- Devices can be marketed only after extensive testing
 - Bench testing
 - In vitro- in vivo testing
 - Clinical trials
- Medical devices companies are compelled to maintain a Quality Management System
 - GMP
 - ISO 13485
- Devices must be evaluated over time (follow up)
 - by the manufacturers
 - by the competent authorities

Risk subjects

- Manufacturer is compelled to evaluate impact of use of the device:
 - On patient
 - On intended user
 - On bystanders
 - On general environment
- Manufacturer is compelled to evaluate effect of product impact in all life cycle, from manufacturing to disposal

EU MDD

- Legally binding indications on how to:
 - Design
 - Test and Validate (according to applicable Norms)
 - Manufacture
 - Control
 - Surveillance and return information
- No Medical Device can be used without prior CE Marking
 - Exceptions for devices under (phase three) clinical investigation
- The National Authorities collect information for the European Database

Scope of the MDD: Device

- Devices on the market must be SAFE and EFFECTIVE
- SAFE: The risk-benefit ratio must be favorable for the patient (or end user)
 - Expected clinical benefit
 - Side effects
 - Residual risk
- EFFECTIVE: The device must effectively perform clinical actions
 - Intended use defines the expected clinical benefit
 - Clinical benefit must be proven by clinical data
- The patient and end user are always protected, even against continuous research

Scope of the MDD: QMS

- Quality of products must be consistent over time
 - Manufacturer responsibility
 - Control by Notified Body for higher classes
- Quality is the output of a complete management system
 - Design
 - Manufacturing
 - Control and product release
 - Connected activities: maintenance, training, environmental control and cleanliness, sterility

Methods of the MDD

- The device must demonstrate to operate effectively and safely <u>before</u> it is released to the end user
- Detailed checklist of essential requirements that must be fulfilled
- Full responsibility of the manufacturers
- Independent review for medium and high risk devices by appointed Boards

Annex I: how it's made

- I General Requirements
- II REQUIREMENTS REGARDING DESIGN AND CONSTRUCTION
 - Chemical, physical and biological properties
 - Infection and microbial contamination
 - Construction and environmental properties
 - Devices with a measuring function
 - Protection against radiation
 - Requirements for medical devices connected to or equipped with an energy source
 - Information supplied by the manufacturer

General comments

- "Designed and manufactured"
 - Design criteria
 - Product specifications
 - Production control activities
- "Minimize the risk"
 - Evaluation of causes and of probability of risk
 - Control methods
 - Perfection is "impossible" but it is required to implement all possible solutions

Norms

- Device lifecycle is regulated as per:
 - ISO 13485 for Quality Systems
 - ISO 14971 for Risk Management
 - ISO 14155 and various guidelines for Clinical Investigations
- Each product category is then regulated by technical norms
 - For electro medical devices
 - For sterile devices
 - For devices in contact with the body
 - Multiple harmonised and not harmonised norms for technical regulation

Manufacturers obligations

- Design control
- Product and process validation
- Clinical evaluation
- Manufacturing as per Good Manufacturing Practice guidelines
- Retention of records
- Continuous surveillance
- Device database
- Strict control on Post Market information and follow up clinical trials

Device life cycle

Device Dossier

- Technical document required by authorities to prove compliance to Essential Requirements
- Descriptive and proof of compliance
 - Tech features (drawing, composition,...)
 - Risk management
 - Bench, in vitro, in vivo testing
 - Clinical data

Quality standard for design ISO 13485 clause 7

- Clinical and safety requirements: user needs
 - Expected benefit
 - Mechanism of action
- Device technical development
 - Tech drawings
 - Composition
 - SW modules
- Device technical verification and validation
 - Bench test
 - Safety test on animal models (ISO 10993)
 - Design transfer from prototype to industrial scale

Standard for risk management

ISO 14971

- Search of potential harmful events or device malfunctions
- Evaluation of probability and of impact on patient health (severity)
- Search of risk control measures (example: safe design, protections and alarms)
- Evaluation of risk-benefit ratio

Standard for biocompatibility ISO 10093

- Assessment of device impact on human body in terms of risk of bio-incompatibility
- Device identification: materials, manufacturing methods, sterility level
- Evaluation of available information
- Planning of test to collect new information
 - Material characterization
 - In vitro
 - In vivo

Manufacturing quality EU GMP ISO 13485

- The device shall be manufactured consistently to the Device Dossier
 - Equivalent to the prototype
 - Constant level of quality
 - Full traceability
- Standard operation procedures for Company management
 - Industrial processes
 - Equipment
 - Personnel

Standard for clinical trials ISO 14155

- Clinical trials on humans: authorized by Ethics Committee
 - Device with favorable risk- benefit ratio for each participant
 - Good statistical significance
- Difficult study design
 - Placebo? Mock device?
 - Number of participants
 - Data from animal models

Any questions, guys?

